Обход в ширину — различия между версиями
(→Описание алгоритма) |
Nsychev (обсуждение | вклад) м (Откат правок 195.19.34.91 (обсуждение) к версии 77.234.215.137) |
||
Строка 1: | Строка 1: | ||
'''Обход в ширину''' (Поиск в ширину, англ. ''BFS'', ''Breadth-first search'') — один из простейших алгоритмов обхода [[Основные определения теории графов|графа]], являющийся основой для многих важных алгоритмов для работы с графами. | '''Обход в ширину''' (Поиск в ширину, англ. ''BFS'', ''Breadth-first search'') — один из простейших алгоритмов обхода [[Основные определения теории графов|графа]], являющийся основой для многих важных алгоритмов для работы с графами. | ||
+ | |||
+ | == Описание алгоритма == | ||
+ | [[Image: Graph-BFS.gif|thumb|240px|Алгоритм BFS<br> | ||
+ | <font color=#3c9eff>посещенные</font> вершины<br>]] | ||
+ | |||
+ | |||
+ | Пусть задан невзвешенный ориентированный граф <tex> G = (V, E) </tex>, в котором выделена исходная вершина <tex>s</tex>. Требуется найти длину кратчайшего пути (если таковой имеется) от одной заданной вершины до другой. Частным случаем указанного графа является невзвешенный неориентированный граф, т.е. граф, в котором для каждого ребра найдется обратное, соединяющее те же вершины в другом направлении. | ||
+ | |||
+ | Для алгоритма нам потребуются [[Очередь|очередь]] и множество посещенных вершин <tex> was </tex>, которые изначально содержат одну вершину <tex> s </tex>. На каждом шагу алгоритм берет из начала очереди вершину <tex> v </tex> и добавляет все непосещенные смежные с <tex> v </tex> вершины в <tex> was </tex> и в конец очереди. Если очередь пуста, то алгоритм завершает работу. | ||
== Анализ времени работы == | == Анализ времени работы == |
Версия 13:10, 12 декабря 2021
Обход в ширину (Поиск в ширину, англ. BFS, Breadth-first search) — один из простейших алгоритмов обхода графа, являющийся основой для многих важных алгоритмов для работы с графами.
Содержание
Описание алгоритма
Пусть задан невзвешенный ориентированный граф , в котором выделена исходная вершина . Требуется найти длину кратчайшего пути (если таковой имеется) от одной заданной вершины до другой. Частным случаем указанного графа является невзвешенный неориентированный граф, т.е. граф, в котором для каждого ребра найдется обратное, соединяющее те же вершины в другом направлении.
Для алгоритма нам потребуются очередь и множество посещенных вершин , которые изначально содержат одну вершину . На каждом шагу алгоритм берет из начала очереди вершину и добавляет все непосещенные смежные с вершины в и в конец очереди. Если очередь пуста, то алгоритм завершает работу.
Анализ времени работы
Оценим время работы для входного графа
, где множество ребер представлено списком смежности. В очередь добавляются только непосещенные вершины, поэтому каждая вершина посещается не более одного раза. Операции внесения в очередь и удаления из нее требуют времени, так что общее время работы с очередью составляет операций. Для каждой вершины рассматривается не более ребер, инцидентных ей. Так как , то время, используемое на работу с ребрами, составляет . Поэтому общее время работы алгоритма поиска в ширину — .Корректность
Утверждение: |
В очереди поиска в ширину расстояние вершин до монотонно неубывает. |
Докажем это утверждение индукцией по числу выполненных алгоритмом шагов. Введем дополнительный инвариант: у любых двух вершин из очереди, расстояние до отличается не более чем на .База: изначально очередь содержит только одну вершину .Переход: пусть после итерации в очереди вершин с расстоянием и вершин с расстоянием .Рассмотрим Оба инварианта сохранились, итерацию. Из очереди достаем вершину , с расстоянием . Пусть у есть непосещенных смежных вершин. Тогда, после их добавления, в очереди находится вершин с расстоянием и, после них, вершин с расстоянием . после любого шага алгоритма элементы в очереди неубывают. |
Теорема: |
Алгоритм поиска в ширину в невзвешенном графе находит длины кратчайших путей до всех достижимых вершин. |
Доказательство: |
Допустим, что это не так. Выберем из вершин, для которых кратчайшие пути от найдены некорректно, ту, настоящее расстояние до которой минимально. Пусть это вершина , и она имеет своим предком в дереве обхода в ширину , а предок в кратчайшем пути до — вершина .Так как — предок в кратчайшем пути, то , и расстояние до найдено верно, . Значит, .Так как Расстояние до — предок в дереве обхода в ширину, то . найдено некорректно, поэтому . Подставляя сюда два последних равенства, получаем , то есть, . Из ранее доказанной леммы следует, что в этом случае вершина попала в очередь и была обработана раньше, чем . Но она соединена с , значит, не может быть предком в дереве обхода в ширину, мы пришли к противоречию, следовательно, найденные расстояния до всех вершин являются кратчайшими. |
Дерево обхода в ширину
Поиск в ширину также может построить дерево поиска в ширину. Изначально оно состоит из одного корня . Когда мы добавляем непосещенную вершину в очередь, то добавляем ее и ребро, по которому мы до нее дошли, в дерево. Поскольку каждая вершина может быть посещена не более одного раза, она имеет не более одного родителя. После окончания работы алгоритма для каждой достижимой из вершины путь в дереве поиска в ширину соответствует кратчайшему пути от до в .
Реализация
Предложенная ниже функция возвращает кратчайшее расстояние между двумя вершинами.
- — исходная вершина
- — конечная вершина
- — граф, состоящий из списка вершин и списка смежности . Вершины нумеруются целыми числами.
- — очередь.
- В поле хранится расстояние от до .
int BFS(G: (V, E), source: int, destination: int): d = int[|V|] fill(d,) d[source] = 0 Q = Q.push(source) while Q u = Q.pop() for v: (u, v) in E if d[v] == d[v] = d[u] + 1 Q.push(v) return d[destination]
Если требуется найти расстояние лишь между двумя вершинами, из функции можно выйти, как только будет установлено значение meet-in-the-middle.
. Еще одна оптимизация может быть проведена при помощи методаВариации алгоритма
0-1 BFS
Пусть в графе разрешены ребра веса
и , необходимо найти кратчайший путь между двумя вершинами. Для решения данной задачи модифицируем приведенный выше алгоритм следующим образом:Вместо очереди будем использовать дек (или можно даже steque). Если рассматриваемое ее ребро имеет вес , то будем добавлять вершину в начало, а иначе в конец. После этого добавления, дополнительный введенный инвариант в доказательстве расположения элементов в деке в порядке неубывания продолжает выполняться, поэтому порядок в деке сохраняется. И, соответственно, релаксируем расстояние до всех смежных вершин и, при успешной релаксации, добавляем их в дек.
Таким образом, в начале дека всегда будет вершина, расстояние до которой меньше либо равно расстоянию до остальных вершин дека, и инвариант расположения элементов в деке в порядке неубывания сохраняется. Значит, алгоритм корректен на том же основании, что и обычный BFS. Очевидно, что каждая вершина войдет в дек не более двух раз, значит, асимптотика у данного алгоритма та же, что и у обычного BFS.
1-k BFS
Пусть в графе разрешены ребра целочисленного веса из отрезка
, необходимо найти кратчайший путь между двумя вершинами. Представим ребро веса как последовательность ребер (где — новые вершины). Применим данную операцию ко всем ребрам графа . Получим граф, состоящий (в худшем случае) из ребер и вершин. Для нахождения кратчайшего пути следует запустить BFS на новом графе. Данный алгоритм будет иметь асимптотику .См. также
Источники информации
- Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ — 2-е изд. — М.: «Вильямс», 2007. — с. 459. — ISBN 5-8489-0857-4
- MAXimal :: algo :: Поиск в ширину
- Wikipedia — Breadth-first search
- Wikipedia — Поиск в ширину
- Визуализатор алгоритма