Связь алгебры и исчисления кортежей. Реляционная полнота исчисления кортежей — различия между версиями
Sashapff (обсуждение | вклад) (Новая страница: «== Алгебра через исчисление == Выразим операции реляционной алгебры через операции реляц…») |
(нет различий)
|
Версия 02:10, 20 декабря 2021
Содержание
- 1 Алгебра через исчисление
- 1.1 Проекция [math]\pi_{A_1,\ldots,A_n}(R)[/math]
- 1.2 Фильтр [math]\sigma_\theta(R)[/math]
- 1.3 Дополнительный столбец [math]\varepsilon_{A=expr}(R)[/math]
- 1.4 Объединение [math]R_1 \cup R_2[/math]
- 1.5 Разность [math]R1 \smallsetminus R2[/math]
- 1.6 Декартово произведение [math]R_1 \times R_2[/math]
- 1.7 Естественное соединение [math]R_1 \bowtie R_2[/math]
Алгебра через исчисление
Выразим операции реляционной алгебры через операции реляционного исчисления.
Проекция
select A1$,\ldots,$An from R
Фильтр
from R where $\theta$
Дополнительный столбец
select R.*, expr as A from R
Объединение
R :: R1, R2
Разность
R :: R1 where $\lnot\exists$R2 (R1 = R2)
Декартово произведение
R1.*, R2.* from R1, R2
Естественное соединение
R1.*, R2.* from R1, R2 where R1.Атрибуты = R2.Атрибуты
Набор перечисленных операций составляет базис операций реляционной алгебры. Все операции этого набора можно эмулировать в терминах реляционного исчисления. Из этого следует, что выразительна мощность реляционного исчисления не меньше выразительной мощности реляционной алгебры.