Зависимости соединения и пятая нормальная форма — различия между версиями
(→Пятая нормальная форма (Проекционно-соединительная)) |
|||
Строка 113: | Строка 113: | ||
Если данные условия выполняются, то возможно есть зависимость соединения и стоит декомпозировать. | Если данные условия выполняются, то возможно есть зависимость соединения и стоит декомпозировать. | ||
+ | |||
+ | '''Замечание.''' 5 нормальная форма - лучшая форма с точки зрения операций проекции и соединения. | ||
[[Категория: Базы данных]] | [[Категория: Базы данных]] |
Версия 21:38, 22 декабря 2021
Множественная декомпозиция
Рассмотрим отношение и его декомпозицию:
Course | Lecturer | Group |
---|---|---|
СУБД | Корнеев Г. А. | M3438 |
СУБД | Корнеев Г. А. | M3439 |
Мат.ан. | Кохась К. П. | M3237 |
Мат.ан. | Виноградов О. Л. | M3239 |
Java | Корнеев Г. А. | M3239 |
Course | Lecturer |
---|---|
СУБД | Корнеев Г. А. |
СУБД | Корнеев Г. А. |
Мат.ан. | Кохась К. П. |
Мат.ан. | Виноградов О. Л. |
Java | Корнеев Г. А. |
Course | Group |
---|---|
СУБД | M3438 |
СУБД | M3439 |
Мат.ан. | M3237 |
Мат.ан. | M3239 |
Java | M3239 |
Lecturer | Group |
---|---|
Корнеев Г. А. | M3438 |
Корнеев Г. А. | M3439 |
Кохась К. П. | M3237 |
Виноградов О. Л. | M3239 |
Корнеев Г. А. | M3239 |
Тогда необходимо задать ограничения для обеспечения корректности, то есть:
Если
- Лектор $L$ читает курс $C$
- Лектор $L$ читает группе $G$
- Группа $G$ слушает курс $C$
То лектор $L$ читает курс $C$ группе $G$.
При этом есть все 3 вида аномалии: вставки, удаления и обновления. Например, когда лектор читает что-то группе, группа слушает курс, но лектор конкретно этот курс не читает.
Зависимость соединения
Определение: |
В отношении есть зависимость соединения | тогда и тогда тогда, когда соответствующая декомпозиция корректна: . При этом все должны быть подмножествами исходного множества атрибутов.
Теорема Фейгина в терминах зависимости соединения будет выглядеть следующим образом:
Для
Определение: |
Тривиальные зависимости соединения $-$ зависимости соединения, у которых одно из отношений, на которые мы проецируем, совпадает с исходным: |
Утверждение: |
Тривиальные зависимости соединения являются обобщением для тривиальных множественных зависимостей. |
Из тривиальности зависимости соединения следует, что либо | составляет все атрибуты, что означает, что пустой, либо составляет все атрибуты, из чего следует, что пустой. То есть либо , либо пустые в зависимости соединения на двух проекциях. Значит, это была тривиальная множественная зависимость.
Пятая нормальная форма (Проекционно-соединительная)
Определение: |
Отношение находится в пятой нормальной форме тогда и только тогда, когда для каждой нетривиальной ЗС | каждое $X_{i} -$ надключ.
Утверждение: |
Если отношение находится в 5НФ, то оно находится в 4НФ. |
По теореме Фейгина | . В этой многозначной зависимости $X -$ надключ. Значит, отношение находится в 4НФ.
Формально, для приведения к 5 нормальной форме необходимо найти все зависимости соединения, однако это достаточно сложно. На практике ЗС, не являющиеся МЗ, встречаются редко. Попробовать выяснить, находится ли отношение в 5НФ, можно с помощью кольцевых ограничений:
Если
- $\ldots$
То
Если данные условия выполняются, то возможно есть зависимость соединения и стоит декомпозировать.
Замечание. 5 нормальная форма - лучшая форма с точки зрения операций проекции и соединения.