Soft-Max и Soft-Arg-Max — различия между версиями
(→Связь между вариациями Soft-Max) |
|||
Строка 44: | Строка 44: | ||
Обозначим "плохой" '''soft-max''', как '''bad-soft-max'''. Тогда: | Обозначим "плохой" '''soft-max''', как '''bad-soft-max'''. Тогда: | ||
− | *'''bad-soft-max'''<tex>x_{1},\ldots,x_{n}=\left \langle x, \right .</tex>'''soft-arg-max'''<tex>\left . \left (x_{1},\ldots,x_{n} \right ) \right \rangle</tex> | + | *'''bad-soft-max'''<tex>\left(x_{1},\ldots,x_{n}\right)=\left \langle x, \right .</tex>'''soft-arg-max'''<tex>\left . \left (x_{1},\ldots,x_{n} \right ) \right \rangle</tex> |
+ | *<tex>\nabla</tex>'''soft-max'''<tex>\left(x_{1},\ldots,x_{n}\right)=</tex>'''soft-arg-max'''<tex>\left(x_{1},\ldots,x_{n}\right)</tex> |
Версия 16:53, 1 июля 2022
Soft-Max и Soft-Arg-Max.
Содержание
Soft-Arg-Max
Пусть есть задача мягкой классификации: Алгоритм выдает значения L1, L2, ... Ln, где n - число классов. Li - уверенность алгоритма в том, что объект принадлежит классу i; -oo <=Li <= +oo. Нужно для этих значений найти такие p1,...pn, что pi из [0, 1], а сумма pi = 1, то есть p1..pn - распределение вероятностей. Для этого возьмём экспоненту от L1..Ln; Получим числа от [0;+oo] и нормируем их: pi = exp(Li)/Sum(exp(Li)) Выполняется следующее: Li <= Lj => Pi <= Pj
Есть модель a, возвращающая Li. Необходимо сделать так, чтобы a возвращала pi, при этом оставаясь дифференциируемой.
soft-arg-max , гдеСвойства soft-arg-max
- Вычисляет по вектору чисел вектор с распределением вероятностей.
- Можно интерпретировать как вероятность нахождения максимума в -й координате.
- soft-arg-max soft-arg-max
- Предыдущее свойство используют для устойчивости вычислений. При
Soft-Max
Плохой Soft-Max
Зададим функцию soft-max таким образом:
soft-max
soft-arg-maxГладкая аппроксимация максимума. Математическое ожидание или средневзвешенное, где веса — экспоненты значений соответствующих элементов. Сохраняет некоторые свойства максимума:
- soft-max
- soft-max soft-max
Заданный выше soft-max — "плохой" в связи с тем, что мы считаем средневзвешенное значение, которое всегда будет меньше максимума, что приведёт к проблемам с поиском максимума.
Хороший Soft-Max
soft-max
- Не сохраняет свойство soft-max
- Производная равна soft-arg-max
В этом случае сохраняется монотонность, значит, не возникнет проблем с поиском минимума и максимума.
Связь между вариациями Soft-Max
Обозначим "плохой" soft-max, как bad-soft-max. Тогда:
- bad-soft-max soft-arg-max
- soft-max soft-arg-max