Soft-Max и Soft-Arg-Max — различия между версиями
Betson (обсуждение | вклад) (→Плохой Soft-Max) |
Betson (обсуждение | вклад) |
||
Строка 30: | Строка 30: | ||
\end{cases} = y_{i}\left ( I\left [ i = j \right ] - y_{j}\right )</tex> | \end{cases} = y_{i}\left ( I\left [ i = j \right ] - y_{j}\right )</tex> | ||
− | У | + | У <tex>\boldsymbol{\mathbf{soft{\text -}arg{\text -}max}}</tex> такое название, так как это, по сути, гладкая аппроксимация модифицированного <tex>\boldsymbol{\mathbf{arg{\text -}max}}</tex>. |
===Свойства soft-arg-max=== | ===Свойства soft-arg-max=== | ||
Строка 41: | Строка 41: | ||
<tex>\boldsymbol{\mathbf{soft{\text -}arg{\text -}max}}_{t}\left(x\right)=\frac{\exp\left(\frac{x_{i}}{t}\right)}{\sum\exp\left(\frac{x_{j}}{t}\right)}</tex> | <tex>\boldsymbol{\mathbf{soft{\text -}arg{\text -}max}}_{t}\left(x\right)=\frac{\exp\left(\frac{x_{i}}{t}\right)}{\sum\exp\left(\frac{x_{j}}{t}\right)}</tex> | ||
− | Данная модификация полезна, когда необходимо контролировать распределение вероятностей, получаемое | + | Данная модификация полезна, когда необходимо контролировать распределение вероятностей, получаемое <tex>\boldsymbol{\mathbf{soft{\text -}arg{\text -}max}}</tex>. Чем больше параметр <tex>t</tex>, тем больше получаемые вероятности будут похожи на равномерное распределение. |
==Soft-Max== | ==Soft-Max== | ||
Строка 47: | Строка 47: | ||
[[File:BadSoftMax.png|200px|thumb|рис.1 Плохой Soft-Max (помечен красным)]] | [[File:BadSoftMax.png|200px|thumb|рис.1 Плохой Soft-Max (помечен красным)]] | ||
[[File:GoodSoftMax.png|200px|thumb|рис.2 Хороший Soft-Max (помечен оранжевым)]] | [[File:GoodSoftMax.png|200px|thumb|рис.2 Хороший Soft-Max (помечен оранжевым)]] | ||
− | Зададим функцию | + | Зададим функцию <tex>\boldsymbol{\mathbf{soft{\text -}max}}</tex> таким образом: |
<tex>\boldsymbol{\mathbf{soft{\text -}max}}\left ( x_{1},\ldots,x_{n}\right ) = \frac{x_{i}~\cdot~\exp \left ( x_{i} \right )}{\sum_{j}\exp \left( x_{j} \right )} = \left \langle x, \right .\boldsymbol{\mathbf{soft{\text -}arg{\text -}max}}\left . \left (x_{1},\ldots,x_{n} \right ) \right \rangle</tex> | <tex>\boldsymbol{\mathbf{soft{\text -}max}}\left ( x_{1},\ldots,x_{n}\right ) = \frac{x_{i}~\cdot~\exp \left ( x_{i} \right )}{\sum_{j}\exp \left( x_{j} \right )} = \left \langle x, \right .\boldsymbol{\mathbf{soft{\text -}arg{\text -}max}}\left . \left (x_{1},\ldots,x_{n} \right ) \right \rangle</tex> | ||
Строка 56: | Строка 56: | ||
*<tex>\boldsymbol{\mathbf{soft{\text -}max}}\left ( x+a,y+a,z+a\right ) =\boldsymbol{\mathbf{soft{\text -}max}}\left ( x,y,z\right ) + a</tex> | *<tex>\boldsymbol{\mathbf{soft{\text -}max}}\left ( x+a,y+a,z+a\right ) =\boldsymbol{\mathbf{soft{\text -}max}}\left ( x,y,z\right ) + a</tex> | ||
− | Заданный выше | + | Заданный выше <tex>\boldsymbol{\mathbf{soft{\text -}max}}</tex> {{---}} "плохой" в связи с тем, что мы считаем средневзвешенное значение, которое всегда будет меньше максимума, что приведёт к проблемам с поиском максимума. |
===Хороший Soft-Max=== | ===Хороший Soft-Max=== | ||
Строка 62: | Строка 62: | ||
*Не сохраняется свойство <tex>\boldsymbol{\mathbf{soft{\text -}max}}\left(a,a,a\right)=a</tex> | *Не сохраняется свойство <tex>\boldsymbol{\mathbf{soft{\text -}max}}\left(a,a,a\right)=a</tex> | ||
− | *Производная равна | + | *Производная равна <tex>\boldsymbol{\mathbf{soft{\text -}arg{\text -}max}}</tex> |
В этом случае сохраняется монотонность, значит, не возникнет проблем с поиском минимума и максимума. | В этом случае сохраняется монотонность, значит, не возникнет проблем с поиском минимума и максимума. | ||
==Связь между вариациями Soft-Max== | ==Связь между вариациями Soft-Max== | ||
− | Обозначим "плохой" | + | Обозначим "плохой" <tex>\boldsymbol{\mathbf{soft{\text -}max}}</tex> как <tex>\boldsymbol{\mathbf{bad{\text -}soft{\text -}max}}</tex>. Тогда: |
*<tex>\boldsymbol{\mathbf{bad{\text -}soft{\text -}max}}\left(x_{1},\ldots,x_{n}\right)=\left \langle x, \right .\boldsymbol{\mathbf{soft{\text -}arg{\text -}max}}\left . \left (x_{1},\ldots,x_{n} \right ) \right \rangle</tex> | *<tex>\boldsymbol{\mathbf{bad{\text -}soft{\text -}max}}\left(x_{1},\ldots,x_{n}\right)=\left \langle x, \right .\boldsymbol{\mathbf{soft{\text -}arg{\text -}max}}\left . \left (x_{1},\ldots,x_{n} \right ) \right \rangle</tex> | ||
Строка 74: | Строка 74: | ||
==Примечания== | ==Примечания== | ||
− | *В большинстве статей пишется | + | *В большинстве статей пишется <tex>\boldsymbol{\mathbf{soft{\text -}max}}</tex>, хотя вместо этого подразумевается <tex>\boldsymbol{\mathbf{soft{\text -}arg{\text -}max}}</tex> |
− | * | + | *<tex>\boldsymbol{\mathbf{soft{\text -}arg{\text -}max}}</tex> можно называть также как обобщённая (многомерная) сигмоида |
− | * | + | *<tex>\boldsymbol{\mathbf{soft{\text -}arg{\text -}max}}</tex> является алгоритмом подсчёта весов для <tex>\boldsymbol{\mathbf{soft{\text -}max}}</tex> |
==Источники== | ==Источники== | ||
# [https://www.youtube.com/watch?v=mlPNUbaphZA&ab_channel=MLLabITMO Лекция 7. Байесовские методы А. Забашта] | # [https://www.youtube.com/watch?v=mlPNUbaphZA&ab_channel=MLLabITMO Лекция 7. Байесовские методы А. Забашта] |
Версия 19:55, 1 июля 2022
Содержание
Soft-Arg-Max
Постановка задачи
Пусть есть задача мягкой классификации:
Алгоритм выдает значения
, где — число классов.— уверенность алгоритма в том, что объект принадлежит классу ,
Для этих значений необходимо найти такие
, что:То есть
— распределение вероятностейДля этого выполним преобразование:
Тогда выполняется следующее:
- Модель , возвращающая , после преобразования будет возвращать и останется дифференцируемой
Пусть
, тогда:
У
такое название, так как это, по сути, гладкая аппроксимация модифицированного .Свойства soft-arg-max
- Вычисляет по вектору чисел вектор с распределением вероятностей
- Можно интерпретировать как вероятность нахождения максимума в -й координате
- Предыдущее свойство используют для устойчивости вычислений при
Модификация soft-arg-max
Данная модификация полезна, когда необходимо контролировать распределение вероятностей, получаемое
. Чем больше параметр , тем больше получаемые вероятности будут похожи на равномерное распределение.Soft-Max
Плохой Soft-Max
Зададим функцию
таким образом:
Гладкая аппроксимация максимума. Математическое ожидание или средневзвешенное, где веса — экспоненты значений соответствующих элементов. Сохраняет некоторые свойства максимума:
Заданный выше
— "плохой" в связи с тем, что мы считаем средневзвешенное значение, которое всегда будет меньше максимума, что приведёт к проблемам с поиском максимума.Хороший Soft-Max
- Не сохраняется свойство
- Производная равна
В этом случае сохраняется монотонность, значит, не возникнет проблем с поиском минимума и максимума.
Связь между вариациями Soft-Max
Обозначим "плохой"
как . Тогда:Примечания
- В большинстве статей пишется , хотя вместо этого подразумевается
- можно называть также как обобщённая (многомерная) сигмоида
- является алгоритмом подсчёта весов для
Источники
- Лекция 7. Байесовские методы А. Забашта
- Лекция 7. Автоматическое дифференцирование и нейронные сети С. Муравьёв