Обратная матрица — различия между версиями
(Отмена правки 80742, сделанной 46.242.10.153 (обсуждение)) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
{{Определение | {{Определение | ||
|definition='''Обратная матрица''' - такая матрица <tex>A^{-1}</tex>, при умножении на которую, исходная матрица <tex>A</tex> даёт в результате единичную матрицу <tex>E</tex> | |definition='''Обратная матрица''' - такая матрица <tex>A^{-1}</tex>, при умножении на которую, исходная матрица <tex>A</tex> даёт в результате единичную матрицу <tex>E</tex> | ||
Строка 106: | Строка 127: | ||
=== Метод присоединенной матрицы === | === Метод присоединенной матрицы === | ||
− | <math dpi = "145">A^{-1} = \frac{\widehat{A}^T}{\det A}</math>, где <math> \widehat{A}</math> | + | <math dpi = "145">A^{-1} = \frac{\widehat{A}^T}{\det A}</math>, где <math> \widehat{A}</math> — присоединенная матрица; |
{{Определение | {{Определение | ||
|definition= '''Присоединенная(союзная, взаимная) матрица''' — матрица, составленная из алгебраических дополнений для соответствующих элементов исходной матрицы. | |definition= '''Присоединенная(союзная, взаимная) матрица''' — матрица, составленная из алгебраических дополнений для соответствующих элементов исходной матрицы. | ||
Строка 137: | Строка 158: | ||
<math dpi = "145">\ A_{ij}=(-1)^{i+j}M_{ij}</math>, | <math dpi = "145">\ A_{ij}=(-1)^{i+j}M_{ij}</math>, | ||
− | где <math dpi = "145">\ M_{ij}</math> | + | где <math dpi = "145">\ M_{ij}</math> — дополнительный минор, определитель матрицы, получающейся из исходной матрицы <math dpi = "145">\ A</math> путем вычёркивания ''i'' -й строки и ''j'' -го столбца. |
<math dpi="145">M_{ij} = det\begin{pmatrix} | <math dpi="145">M_{ij} = det\begin{pmatrix} |
Версия 06:41, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Определение: |
Обратная матрица - такая матрица | , при умножении на которую, исходная матрица даёт в результате единичную матрицу
Содержание
Обратимость в алгебре
Определение: |
Пусть | - алгебра над . называется единицей , если , причем единственна
Определение: |
Пусть в алгебре | , тогда называется левым обратным по отношению к , а - правым обратным по отношению к
Определение: |
Пусть | . Левый обратный элементу , являющийся одновременно и правым обратным к нему, называется обратным и обозначается . При этом сам элемент называется обратимым.
Лемма: |
Пусть алгебре
— левый обратный Тогда — правый обратный. обратим, при этом и |
Доказательство: |
Факт 1. , но , тогда по определению .Факт 2. Пусть , но |
Критерий обратимости матрицы
Теорема: |
Квадратная матрица обратима (имеет обратную матрицу) тогда и только тогда, когда она невырожденная, то есть . |
Доказательство: |
Шаг 1. Если матрица обратима, то для некоторой матрицы . Тогда, если квадратные матрицы одного и того же порядка, то :, следовательно, . Шаг 2. Докажем обратное утверждение. Пусть .1) Докажем существование правой обратной матрицы .Предположим , где, фиксируем , тогда: , тогда получим, что — матрица системы уравнений, так как , то по Крамеру В итоге для всех получим матрицу , что и требовалось.
Предположим Фиксируем 3) Тогда по лемме , тогда ,получаем заполнение по строчкам, аналогично первому пункту показываем . , теорема доказана. |
Свойства обратной матрицы
Методы нахождения обратной матрицы
Метод Гаусса для нахождения обратной матрицы
Возьмём две матрицы: саму
и . Приведём матрицу к единичной матрице методом Гаусса. После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной .Пример
Найдем обратную матрицу для матрицы
- 1) Для начала убедимся, что ее определитель не равен нулю(она невырожденная).
- 2) Справа от исходной матрицы припишем единичную.
- 3) Методом Гаусса приведем левую матрицу к единичной, применяя все операции одновременно и к левой, и к правой матрицам.
- 4)
Метод присоединенной матрицы
, где — присоединенная матрица;
Определение: |
Присоединенная(союзная, взаимная) матрица — матрица, составленная из алгебраических дополнений для соответствующих элементов исходной матрицы. |
Исходная матрица:
Где:
- — присоединённая(союзная, взаимная) матрица;
- — алгебраические дополнения исходной матрицы;
- — элементы исходной матрицы.
Алгебраическим дополнением элемента
матрицы называется число,
где
— дополнительный минор, определитель матрицы, получающейся из исходной матрицы путем вычёркивания i -й строки и j -го столбца.
Алгоритм получения обратной матрицы
- заменить каждый элемент исходной матрицы на его алгебраическое дополнение - в результате будет получена присоединенная матрица
- разделить каждый элемент транспонированной присоединенной матрицы на определитель исходной матрицы.
Ссылки
Источники
- Анин конспект