Кратности собственных чисел — различия между версиями
Xottab (обсуждение | вклад) м (→Теорема Гамильтона-Кэли) |
|||
| Строка 1: | Строка 1: | ||
| + | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
| + | |+ | ||
| + | |-align="center" | ||
| + | |'''НЕТ ВОЙНЕ''' | ||
| + | |-style="font-size: 16px;" | ||
| + | | | ||
| + | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
| + | |||
| + | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
| + | |||
| + | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
| + | |||
| + | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
| + | |||
| + | ''Антивоенный комитет России'' | ||
| + | |-style="font-size: 16px;" | ||
| + | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
| + | |-style="font-size: 16px;" | ||
| + | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
| + | |} | ||
| + | |||
==Алгебраическая кратность== | ==Алгебраическая кратность== | ||
{{Определение | {{Определение | ||
Версия 07:14, 1 сентября 2022
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Алгебраическая кратность
| Определение: |
| Алгебраической кратностью , отвечающей собственному значению называется порядок нильпотентности оператора (нильпотентной добавки в спектральной компоненте ) NB: - кратность корня минимального полинома NB2: - максимальный размер Жорданова блока в матрице |
Геометрическая кратность
| Определение: |
| Геометрической(спектральной) кратностью с.з называется размерность собственного подпространства, соответствующего этому с.з:
NB: равна числу Жордановых блоков в соответствующей матрице компоненты |
Полная кратность
| Определение: |
| Полной кратностью , соответствующей с.з. называется размерность ультраинвариантного подпространства, соответствующего этому с.з:
NB: - также кратность корня характеристического полинома NB2: - также размер блока, соответствующего спектральной компоненте , т.е. размер матрицы |
Теорема Гамильтона-Кэли
| Теорема (Гамильтон, Кэли): |
Для любого оператора общего вида выполняются три факта:
Полином является аннулирующим выполняется |
| Доказательство: |
|
; ; ; поделим одно на другое: , т.е. второе утверждение верно тогда характеристический полином получается из идеала соответствующего аннулирующего полинома и тождество Кэли сохраняется: |