Ультраинвариантные подпространства — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 +
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 +
|+
 +
|-align="center"
 +
|'''НЕТ ВОЙНЕ'''
 +
|-style="font-size: 16px;"
 +
|
 +
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 +
 +
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 +
 +
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 +
 +
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 +
 +
''Антивоенный комитет России''
 +
|-style="font-size: 16px;"
 +
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 +
|-style="font-size: 16px;"
 +
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 +
|}
 +
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=

Версия 07:21, 1 сентября 2022

НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.


Определение:
Пусть [math]\mathcal{A}: X \rightarrow X[/math] — автоморфизм. Подпространство [math]L[/math] линейного пространства [math]X[/math] называется инвариантным подпространством (ИПП) линейного оператора [math]\mathcal{A}[/math], если [math]\forall x: \mathcal{A}x \in L \ (\mathcal{A}(L)\subset L) [/math]


Лемма:
Если [math]L_1, L_2[/math] — ИПП [math]\mathcal{A}[/math], то [math]L_1 \cap L_2[/math] и [math]L_1+L_2[/math] тоже ИПП.


Определение:
[math]L[/math] — ИПП [math]\mathcal{A}[/math], [math]\mathcal{A}_L: L \rightarrow L[/math], но [math]\forall x \in L: \mathcal{A}_L x=\mathcal{A} x[/math], тогда [math]\mathcal{A}_L=\mathcal{A} \vert_L[/math] называют частью линейного оператора [math]\mathcal{A}[/math] в [math]L[/math] (сужение оператора [math]\mathcal{A}[/math] на [math]L[/math])


Определение:
[math]L_1, L_2[/math] — ИПП [math]\mathcal{A}[/math], [math]X=L_1 \dotplus L_2[/math] тогда [math]L_1, L_2[/math] называют ультраинвариантным подпространством (УИПП).


Определение:
[math]L[/math] — УИПП [math]\mathcal{A}[/math], тогда часть [math]\mathcal{A}_L[/math] называют компонентой [math]\mathcal{A}[/math] в УИПП [math]L[/math]


Теорема:
[math]L_1, L_2[/math] — УИПП [math]\mathcal{A} \ (X=L_1 \dotplus L_2)[/math], тогда [math]\mathcal{A}=\mathcal{A}_{L_1}\mathcal{P}_{L_1}^{\Vert L_2} + \mathcal{A}_{L_2}\mathcal{P}_{L_2}^{\Vert L_1}[/math]
Доказательство:
[math]\triangleright[/math]

[math] X=L_1 \dotplus L_2 \Rightarrow \forall x=x_1+x_2=\mathcal{P}_{L_1}^{\Vert L_2}x+\mathcal{P}_{L_2}^{\Vert L_1}x \ (x_1 \in L_1, x_2 \in L_2) \ (*)[/math] - разложение единственно.

[math]\mathcal{A}(*)=\mathcal{A}_{L_1}(\mathcal{P}_{L_1}^{\Vert L_2}x) + \mathcal{A}_{L_2}(\mathcal{P}_{L_2}^{\Vert L_1}x)[/math] — теорема доказана.
[math]\triangleleft[/math]


Определение:
[math]X=L_1 \dotplus L_2[/math] и [math]\mathcal{A}=\mathcal{A}_{L_1}\mathcal{P}_{L_1}^{\Vert L_2} + \mathcal{A}_{L_2}\mathcal{P}_{L_2}^{\Vert L_1}[/math], тогда [math]\mathcal{A}=\mathcal{A}_{L_1} \dotplus \mathcal{A}_{L_2}[/math] называется прямой суммой линейных операторов [math] \mathcal{A}_{L_1}[/math] и [math]\mathcal{A}_{L_2}[/math]


Утверждение:
Оператор [math]\mathcal{A}[/math] представим прямой суммой своих компонент в УИПП.


Определение:
Проектор на УИПП называется ультрапроектором.


Определение:
УИПП называется минимальным, если оно не содержит внутри себя не тривиальных УИПП меньшей размерности.


Утверждение:
Различные минимальные УИПП дизъюнктны.
Утверждение:
Число попарно дизъюнктных минимальных УИПП конечно (оператор в конечномерном пространстве).