Лемма Гаусса для вычисления квадратичного характера числа по простому модулю — различия между версиями
(→Лемма Гаусса для вычисления квадратичного характера числа по простому модулю) |
|||
| Строка 1: | Строка 1: | ||
| + | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
| + | |+ | ||
| + | |-align="center" | ||
| + | |'''НЕТ ВОЙНЕ''' | ||
| + | |-style="font-size: 16px;" | ||
| + | | | ||
| + | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
| + | |||
| + | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
| + | |||
| + | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
| + | |||
| + | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
| + | |||
| + | ''Антивоенный комитет России'' | ||
| + | |-style="font-size: 16px;" | ||
| + | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
| + | |-style="font-size: 16px;" | ||
| + | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
| + | |} | ||
| + | |||
{{В разработке}} | {{В разработке}} | ||
==Лемма Гаусса для вычисления квадратичного характера числа по простому модулю== | ==Лемма Гаусса для вычисления квадратичного характера числа по простому модулю== | ||
Версия 07:33, 1 сентября 2022
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Лемма Гаусса для вычисления квадратичного характера числа по простому модулю
| Лемма (Гаусс, Вычисление квадратичного характера числа по простому модулю): |
, где — число отрицательных вычетов в ряде абсолютно-наименьших вычетов произведений по модулю . |
| Доказательство: |
|
Пусть — наименьший вычет для , где положительно. Когда пробегает значения между 1 и , будет числом получившихся при этом знаков минус., при . Перемножая сравнения , получаем:
|
Квадратичный характер числа 2 по простому модулю
Итак, нас интересует . В лемме Гаусса для числа 2, без учета требования того, что члены ряда — абсолютно-наименьшие, получим ряд . Применяя опущенное требование получим, что все члены ряда, меньшие останутся положительными, а остальные — станут отрицательными. Рассмотрим 4 случая:
- Перый случай: . Получается в лемме Гаусса количество чисел в ряде кратно 4. Рассмотрим два центральных числа — с номером , и с номером . Очевидно первое из них положительно, и равно , а второе отрицательно, и равно . Значит все числа делятся ровно пополам, и первые из них — положительны, а остальные — отрицательны. Но так как , то в каждой половине четное количество чисел, значит количество знаков "минус" в ряде четное, значит, по лемме Гаусса, .
- Второй случай: . Значит в лемме Гаусса количество чисел в ряде нечетно, причем если убрать одно число, то все остальные будут делиться на равные две части, количество чисел в каждой из которых — четно. Значит требуется узнать, является ли среднее число положительным, или отрицательным. Его номер , следовательно оно равно — значит оно отрицательно, то есть в ряде четное число положительных, и нечетное число отрицательных чисел, значит .
- Третий случай: . Получаем ситуацию как в первом случае, с тем отличием, что в каждой половине ряда нечетное количество чисел — значит отрицательных чисел нечетное количество, и значит .
- Четвертый случай: . Аналогично второму случаю, но при разбиение на две половины, количество чисел в каждой из них — нечетно. Число в середине так же получим отрицательное, значит всего отрицательных чисел четное количество, и .