Согласованный интервал — различия между версиями
Yeputons (обсуждение | вклад) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
[[Категория: Параллельное программирование]] | [[Категория: Параллельное программирование]] | ||
{{Определение | {{Определение |
Версия 07:42, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Определение: |
Интервал — упорядоченная пара срезов (не обязательно согласованных) такая, что . |
Определение: |
Интервал $[G, H]$ является согласованным, если | .
Это значит, что нет сообщений, которые пересекают весь согласованный интервал в обратную сторону (или, что то же самое, нет и "произошло-до" в обратную сторону). Если взять $[G, G]$, то получим в точности определение согласованного среза.
Теорема: "интервал $[G, H]$ согласован" равносильно "существует согласованный срез $X$ внутри интервала: $G \le X \le H$".
В одну сторону очевидно: если внутри интервала есть согласованный срез, то этот срез в обратную сторону сообщения пересекать не могут. Значит, не могут они пересекать и весь интервал.
В обратную сторону (на экзамене не требуется): рассмотрим произвольный согласованный интервал
. В доказательстве ниже будем считать, что $a \to a$ для простоты (но можно переписать доказательство и без рефлексивности).может не быть согласованным срезом (если есть стрелочка из в ), что печально. Но можно попробовать пойти по стрелочкам в обратную сторону. Придумаем формальное "замыкание" : возьмём множество .
- $G \subseteq X$ по построению (тут пользуемся тем, что $a \to a$).
- $X \subseteq H$, иначе есть стрелочка, пересекающая согласованный интервал в обратную сторону.
- $X$ является срезом, так как если есть $a < b$ и $b \in X$, есть $g \in G$ такое, что $b \rightarrow g$. По транзитивности имеем $a \rightarrow g$, что и требуется.
- $X$ является согласованным срезом. Пусть есть события $a \rightarrow b$, причём $b \in X$. Тогда есть такое $g \in G$, что $b \rightarrow g$. Следовательно, $a \rightarrow g$. Значит, $a \in X$, что и требовалось.