Связь максимального паросочетания и минимального вершинного покрытия в двудольных графах — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(См. также)
Строка 1: Строка 1:
 +
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 +
|+
 +
|-align="center"
 +
|'''НЕТ ВОЙНЕ'''
 +
|-style="font-size: 16px;"
 +
|
 +
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 +
 +
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 +
 +
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 +
 +
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 +
 +
''Антивоенный комитет России''
 +
|-style="font-size: 16px;"
 +
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 +
|-style="font-size: 16px;"
 +
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 +
|}
 +
 
==Минимальное вершинное покрытие==
 
==Минимальное вершинное покрытие==
 
{{Определение|definition=
 
{{Определение|definition=

Версия 07:59, 1 сентября 2022

НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.

Минимальное вершинное покрытие

Определение:
Вершинным покрытием (англ. vertex covering) графа [math]G=(V,E)[/math] называется такое подмножество [math]S[/math] множества вершин графа [math]V[/math], что любое ребро этого графа инцидентно хотя бы одной вершине из множества [math]S[/math].


Определение:
Минимальным вершинным покрытием (англ. minimum vertex covering) графа [math]G=(V,E)[/math] называется вершинное покрытие, состоящее из наименьшего числа вершин.


Множество вершин красного цвета — минимальное вершинное покрытие.


Теорема о мощности минимального вершинного покрытия и максимального паросочетания

Определение:
Максимальным паросочетанием (англ. maximum matching) в двудольном графе [math]G[/math] называется паросочетание максимальной мощности.


Теорема (Кёниг):
В произвольном двудольном графе мощность максимального паросочетания равна мощности минимального вершинного покрытия.
Доказательство:
[math]\triangleright[/math]

Пусть в [math]G[/math] построено максимальное паросочетание. Ориентируем ребра паросочетания, чтобы они шли из правой доли в левую, ребра не из паросочетания — так, чтобы они шли из левой доли в правую. Запустим обход в глубину из всех не насыщенных паросочетанием вершин левой доли. Разобьем вершины каждой доли графа на два множества: те, которые были посещены в процессе обхода, и те, которые не были посещены в процессе обхода. Тогда [math]L = L^+ \cup L^-[/math], [math]R = R^+ \cup R^-[/math], где [math]L, R[/math] — правая и левая доли соответственно, [math]L^+, R^+[/math] — вершины правой и левой доли, посещенные обходом, [math]L^-, R^-[/math] — не посещенные обходом вершины. Тогда в [math]G[/math] могут быть следующие ребра:

Доли [math]L^+, L^-, R^+, R^-[/math] и ребра между ними.
  • Из вершин [math]L^+[/math] в вершины [math]R^+[/math] и из вершин [math]R^+[/math] в вершины [math]L^+[/math].
  • Из вершин [math]L^-[/math] в вершины [math]R^-[/math] и из вершин [math]R^-[/math] в вершины [math]L^-[/math].
  • Из вершин [math]L^-[/math] в вершины [math]R^+[/math].

Очевидно, что ребер из [math]L^+[/math] в [math]R^-[/math] и из [math]R^+[/math] в [math]L^-[/math] быть не может. Ребер из [math]R^-[/math] в [math]L^+[/math] быть не может, т.к. если такое ребро [math]uv[/math] существует, то оно — ребро паросочетания. Тогда вершина [math]v[/math] насыщена паросочетанием. Но т.к. [math]v \in L^+[/math], то в нее можно дойти из какой-то ненасыщенной вершины левой доли. Значит, существует ребро [math]wv, w \in R^+[/math]. Но тогда [math]v[/math] инцидентны два ребра из паросочетания. Противоречие.

Заметим, что минимальным вершинным покрытием [math]G[/math] является либо [math]L[/math], либо [math]R[/math], либо [math]L^- \cup R^+[/math]. В [math]R^+[/math] не насыщенных паросочетанием вершин быть не может, т.к. иначе в [math]G[/math] существует дополняющая цепь, что противоречит максимальности построенного паросочетания. В [math]L^-[/math] свободных вершин быть не может, т.к. все они должны находиться в [math]L^+[/math]. Тогда т.к. ребер из паросочетания между [math]R^+[/math] и [math]L^-[/math] нет, то каждому ребру максимального паросочетания инцидентна ровно одна вершина из [math]L^- \cup R^+[/math].

Тогда [math]|L^- \cup R^+|[/math] равна мощности максимального паросочетания. Множество вершин [math]L^- \cup R^+[/math] является минимальным вершинным покрытием. Значит мощность максимального паросочетания равна мощности минимального вершинного покрытия.
[math]\triangleleft[/math]

Алгоритм построения минимального вершинного покрытия

Из доказательства предыдущей теоремы следует алгоритм поиска минимального вершинного покрытия графа:

  1. Построить максимальное паросочетание.
  2. Ориентировать ребра:
    • Из паросочетания — из правой доли в левую.
    • Не из паросочетания — из левой доли в правую.
  3. Запустить обход в глубину из всех свободных вершин левой доли, построить множества [math]L^+,L^-,R^+,R^-[/math].
  4. В качестве результата взять [math]L^- \cup R^+[/math].

См. также

Источники информации