Вещественные числа — различия между версиями
м (исправил немного) |
|||
| Строка 1: | Строка 1: | ||
| + | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
| + | |+ | ||
| + | |-align="center" | ||
| + | |'''НЕТ ВОЙНЕ''' | ||
| + | |-style="font-size: 16px;" | ||
| + | | | ||
| + | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
| + | |||
| + | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
| + | |||
| + | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
| + | |||
| + | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
| + | |||
| + | ''Антивоенный комитет России'' | ||
| + | |-style="font-size: 16px;" | ||
| + | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
| + | |-style="font-size: 16px;" | ||
| + | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
| + | |} | ||
| + | |||
[[Категория:Математический анализ 1 курс]] | [[Категория:Математический анализ 1 курс]] | ||
Версия 08:38, 1 сентября 2022
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Натуральные числа
Множество натуральных чисел определяется следующим образом:
За числом в натуральном ряде непосредственно следует , между и других нет.
Гильберт:
Натуральные числа — первичные элементы, природа которых не обсуждается, все остальное базируется на этом.
Целые числа
Множество целых чисел . Также
Рациональные числа
Множество рациональных чисел
Множество рациональных чисел упорядочено, то есть всегда выполняется только один из трех случаев: или
Модуль
| Определение: |
| — модуль или абсолютная величина числа x |
Свойства модуля:
Аксиома Архимеда
В множестве выполняется аксиома Архимеда:
Дополнение множества рациональных чисел
Пусть — два числовых множества.
| Определение: |
| Запись означает, что . |
Аналогично определяются записи типа , и т. д. и т. п.
Если , то запись означает, что .
Неполнота числовой оси
| Утверждение: |
Пусть
Тогда |
|
Допустим, что такое существует и . Тогда возможны три случая: Случай невозможен. Докажем это. Предположим, что , Значит число можно представить в виде несократимой дроби . Тогда: 2 - простое, значит делится на , противоречие. Возможны два случая: либо , либо . Рассмотрим первый из них, второй доказывается аналогичным образом 1) Для всех рациональных
Заметим, что если , то ; Для такого По предположению, , противоречие. 2) Пусть Для всех рациональных При , тогда Рассмотрим , тогда , пришли к противоречию. |
Этим утверждением обнаруживается серьезный пробел во множестве рациональных чисел. Для его ликвидации вводятся некоторые объекты. При таком пополнении должны выполняться:
- 4 арифметических действия с сохранением законов арифметики.
- Сохранение упорядоченности.
- Выполнение аксиомы непрерывности:
Пусть и — 2 произвольных подмножества из пополненного множества рациональных чисел, и , то в пополненном множестве
Получим множество, называемое множеством вещественных чисел — .
Из разбора ясно, что мы стоим на аксиоматических позициях.
Для анализа важно то, что для выполняется аксиома непрерывности.
Существует несколько моделей построения :
- Модель Дедекинда
- Модель Вейерштрасса
- Модель Кантора
Базируясь на аксиоме Архимеда и непрерывности, можно установить, что всюду плотно на :
В любом вещественном интервале найдется рациональное число.
Для нас этот факт важен тем, что он гарантирует единственность пополнения для выполнения аксиомы непрерывности.
Любое такое пополнение, независимо от модели, приводит к множествам, изоморфным друг другу.