Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта — различия между версиями
м |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
Существует класс эволюционных алгоритмов, основывающихся на [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем|индикаторах]] для решения задачи [[Задача многокритериальной оптимизации. Multiobjectivization|многокритериальной оптимизации]]. | Существует класс эволюционных алгоритмов, основывающихся на [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем|индикаторах]] для решения задачи [[Задача многокритериальной оптимизации. Multiobjectivization|многокритериальной оптимизации]]. | ||
В данной статье приводится доказательство правомерности использования индикатора [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Гиперобъем|гиперобъема]] в качестве максимизируемого значения из работы <ref>[http://www.mpi-inf.mpg.de/homepage/tfried/paper/2010GECCO_Hyp.pdf Friedrich T., Bringmann K. - The Maximum Hypervolume Set Yields Near-optimal Approximation]</ref>. | В данной статье приводится доказательство правомерности использования индикатора [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Гиперобъем|гиперобъема]] в качестве максимизируемого значения из работы <ref>[http://www.mpi-inf.mpg.de/homepage/tfried/paper/2010GECCO_Hyp.pdf Friedrich T., Bringmann K. - The Maximum Hypervolume Set Yields Near-optimal Approximation]</ref>. |
Версия 08:46, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Существует класс эволюционных алгоритмов, основывающихся на индикаторах для решения задачи многокритериальной оптимизации. В данной статье приводится доказательство правомерности использования индикатора гиперобъема в качестве максимизируемого значения из работы [1].
Содержание
Основные определения
Определение: |
Множество функций вида: | , где убывает и обозначим через .
Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков и . Так как для фиксированных констант функция и имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений и .
Определение: |
Фиксируем | . Для фиксированного отрезка будем называть кортеж , такой что — множеством-решением. Множество таких решений будем обозначать .
Определение: |
Пусть . Минимальным вкладом в гиперобъем множества-решения называется . | и . Тогда вкладом -й точки в гиперобъем решения называется
Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, чтобы существовало множество-решение, максимизирующее индикатор гиперобъема.
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из
точек и верхнюю границу коэффициента аппроксимации для множества из точек, максимизирующего значение индикатора гиперобъема , и докажем, что для количества точек они одинаковы, а именно равны .Индикатор гиперобъема
Утверждение (1): |
Пусть гиперобъема на .
Тогда существует, не обязятельно единственное, множество-решение , которое максимизирует значение |
Доказательство представлено в статье Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем
Нахождение лучшего коэффициента аппроксимации
В статье Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем представленно доказательство верхней границы оптимального коэффицента апроксимации: = .
Нахождение коэффициента аппроксимации множества-решения максимизируюшего гиперобъем
Утверждение (2): |
Пусть и .
Тогда минимальный вклад данного множества-решения: |
Исходя из определения минимальный вклад в гиперобъем множества равен минимуму из всевозможных площадей прямоугольников, образующихся между точками множества-решения и их значениями. Примеры образующихся прямоугольников заштрихованы на рисунке ниже Пусть — длины сторон соответствующего прямоугольника, тогда:для всех Это означает:
и поэтому: Так как среднее гармоническое не больше среднего арифметического: |
Далее необходимо посчитать коэффициент аппроксимации для «внутренних» (
) и «внешних» точек ( или ).Теорема (1): |
Пусть . Любое множество-решение достигает аппроксимации всех внутренних точек. |
Доказательство: |
Допустим, что существует , который не аппроксимируется . Пусть , тогда .Известно, что .После подстановки получим (1).Применив утверждение (2), получим: для всех (2) для всех (3) Таким образом, .Т.к. монотонно убывает, а монотонно возрастает, то максимальное значение достигается при равенстве обоих членов:. Получим верхнюю оценку для : .Вышесказанное верно для .Для Для из (1) и (3) следует, что , что невозможно по условию теоремы. по (1) и (2) , что тоже невозможно по условию теоремы. |
Теорема (2): |
Пусть . И является точкой отсчета. Каждое множество-решение достигает аппроксимации всех точек с и аппроксимации всех точек с . |
Доказательство: |
Доказательство производится c использованием ранее доказанного утверждения о . |
Из теоремы (1) и теоремы (2) выводятся следующие следствия:
Утверждение (Следствие 1): |
Пусть , и является точкой отсчета. Тогда:
|
Утверждение (Следствие 2): |
Пусть . И является точкой отсчета. Тогда если
или , выполняется следующее неравенство = , то есть = |
что и требовалось доказать.
Примечание
Конечно, зависимость от
и в аппроксимационном коэффициенте оптимального множества решения меньше, чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже можно увидеть пример поведения данных значений для класса функций , .