PixelRNN и PixelCNN — различия между версиями
Forliss (обсуждение | вклад) (→Сравнение подходов) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
[[File:pixel-1.png|450px|thumb|Рисунок 1. Пример использования PixelRNN/PixelCNN сетей]] | [[File:pixel-1.png|450px|thumb|Рисунок 1. Пример использования PixelRNN/PixelCNN сетей]] | ||
Версия 09:03, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
PixelRNN и PixelCNN — алгоритмы машинного обучения, входящие в семейство авторегрессивных моделей и использующиеся для генерации и дополнения изображений. Алгоритмы были представлены в 2016 году компанией DeepMind[1] и являются предшественниками алгоритма WaveNet[2], который используется в голосовом помощнике Google.
Основным преимуществом PixelRNN и PixelCNN является уменьшение времени обучения, по сравнению с наивными способами попиксельной генерации изображений.
Содержание
Постановка задачи
Пусть дано черно-белое изображение
размером . Построчно преобразуем картинку в вектор , соединяя конец текущей строки с началом следующей. При таком представлении изображения можно предположить, что значение любого пикселя может зависеть от значений предыдущих пикселей .Тогда значение пикселя [3]. Оценка совместного распределения всех пикселей будет записываться в следующем виде: .
можно выразить через условную вероятность и цепное правило для вероятностейЗадача алгоритма — восстановить данное распределение. Учитывая тот факт, что любой пиксель принимает значение
, необходимо восстановить лишь дискретное распределение.Идея
Так как утверждается, что значение текущего пикселя зависит от значения предыдущего, то уместно использовать рекуррентные нейронные сети (RNN), а точнее долгую краткосрочную память (LSTM). В ранних работах[4] уже использовался данный подход, и вычисление скрытого состояния происходило следующим образом: , т.е. для того, чтобы вычислить текущее скрытое состояние, нужно было подсчитать все предыдущие, что занимает достаточно много времени.
У алгоритма LSTM существует две модификации: RowLSTM и Diagonal BiLSTM. Основным преимуществом модификаций является возможность проводить вычисления параллельно, что ускоряет общее время обучения модели.
RowLSTM
В данной модификации LSTM скрытое состояние считается по формуле: .
Как видно из формулы и Рисунка 2, значение текущего скрытого состояния не зависит от предыдущего слева, а зависит только от предыдущих сверху, которые считаются параллельно.
Таким образом, главным преимуществом алгоритма перед наивным LSTM является более быстрое обучение модели, однако качество получаемых изображений ухудшается. Это связанно как минимум с тем, что мы используем контекст пикселей с предыдущей строки, но никак не используем контекст соседнего слева пикселя, которые является достаточно важным, т.к. является ближайшим с точки зрения построчной генерации изображения. Значит надо научиться находить скрытое состояние слева, но делать это эффективно.
Diagonal BiLSTM
В данной версии скрытое состояние считается таким же образом, как и в наивном подходе:
, но использует следующую хитрость в самом вычислении — построчно сдвинем строки вправо на один пиксель относительно предыдущей, а затем вычислим скрытые состояния в каждом столбце, как показано на Рисунке 3. Как следствие, контекст учитывается более качественно, что повышает качество изображения, однако такая модификация замедляет модель по сравнению с подходом RowLSTM.PixelCNN
Идея в том, что наиболее важные данные для пикселя содержатся в соседних пикселях (в рамках ядра 9x9), поэтому предлагается просто использовать известные пиксели для вычисления нового, как показано на рисунке 2.
Архитектура
В алгоритмах PixelRNN и PixelCNN используются несколько архитектурных трюков, позволяющих производить вычисления быстро и надежно.
Маскированные сверточные слои
В описаниях алгоритмов фигурируют два типа маскированных сверточных слоя — MaskA, MaskB. Они необходимы для сокрытия от алгоритма лишней информации и учета контекста — чтобы ускорить обработку изображения после каждого подсчета, предлагается вместо удаления значения пикселей применять маску к изображению, что является более быстрой операцией.
Для каждого пикселя в цветном изображении в порядке очереди существуют три контекста: красный канал, зеленый и синий. В данном алгоритме очередь важна, т.е. если сейчас обрабатывается красный канал, то контекст только от предыдущих значений красного канала, если зеленый — то от всех значений на красном канале и предыдущих значениях на зеленом и т.д.
MaskA используется для того, чтобы учитывать контекст предыдущих каналов, но при этом не учитывать контекст от предыдущих значений текущего канала и следующих каналов. MaskB выполняет ту же функцию, что и MaskA, но при этом учитывает контекст от предыдущих значений текущего канала.
Уменьшение размерности
На вход в любой их указанных выше алгоритмов (PixelCNN, RowLSTM, Diagonal BiLSTM) подается большое количество объектов, поэтому внутри каждого из них сначала происходит уменьшение их количества в два раза, а затем обратное увеличение до исходного размера. Структура алгоритма с учетом уменьшения размерности показана на рисунке 4.
Внутреннее устройство LSTM
Внутреннее устройство RowLSTM и Diagonal BiLSTM блоков одинаково, за исключением того, что во втором случае добавляется операция сдвига в начале и возврат к исходной структуре изображения в конце.
Структура LSTM блока:
- MaskB слой input-to-state учитывает контекст из входа.
- Сверточный слой state-to-state учитывает контекст из предыдущих скрытых слоев.
Используя эти два сверточных слоя формально вычисление LSTM блока можно записать следующим образом:
где
— функция активации,— операция свертки,
— поэлементное умножение,
— вектор вентиля забывания, вес запоминания старой информации,
— вектор входного вентиля, вес получения новой информации,
— вектор выходного вентиля, кандидат на выход,
— вектор вентиля данных,
— строка входных данных,
— вектор краткосрочной памяти,
— вектор долгосрочной памяти,
и — ядерные веса компонент input-to-state и state-to-state соответственно.
Архитектура PixelRNN
- MaskA размером .
- Блоки уменьшения размеренности с RowLSTM блоком, в котором имеет размер , — . Для Diagonal BiLSTM имеет размер. , — . Количество блоков варьируется.
- ReLU активация.
- Сверточный слой размером .
- Softmax слой.
Архитектура PixelCNN
- MaskA размером .
- Блоки уменьшения размеренности для PixelCNN.
- ReLU активация.
- Сверточный слой размером .
- Softmax слой.
Сравнение подходов
Если сравнивать GAN с PixelCNN/PixelRNN, то можно отметить более хорошее качество получаемых изображений у генеративно-состязательного метода. Однако у метода GAN время обучения медленнее, чем у PixelCNN и PixelRNN. Для реализации GAN требуется найти равновесие Нэша, но в настоящее время нет алгоритма делающего это. Поэтому обучение GAN более нестабильное, если сравнивать с другими методами[7]. В настоящее время многие мировые компании используют GAN для генерации изображений, например: PGGAN от Nvidia, Exemplar GAN от Facebook и другие.
Критерий\название | PixelCNN | PixelRNN(Row LSTM) | PixelRNN(Diagonal BiLSTM) | GAN |
---|---|---|---|---|
Время обучения | Быстрый | Средний | Медленный | Медленный |
Качество генерируемых изображений | Наихудшее | Средне-низкое | Средне-высокое | Высокое |
Примеры реализации
См. также
- Рекуррентные нейронные сети
- Долгая краткосрочная память
- Нейронные сети, перцептрон
- Генерация объектов