Вычислимые числа — различия между версиями
| Строка 1: | Строка 1: | ||
| + | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
| + | |+ | ||
| + | |-align="center" | ||
| + | |'''НЕТ ВОЙНЕ''' | ||
| + | |-style="font-size: 16px;" | ||
| + | | | ||
| + | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
| + | |||
| + | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
| + | |||
| + | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
| + | |||
| + | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
| + | |||
| + | ''Антивоенный комитет России'' | ||
| + | |-style="font-size: 16px;" | ||
| + | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
| + | |-style="font-size: 16px;" | ||
| + | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
| + | |} | ||
| + | |||
В математике натуральные, целые и рациональные числа являются конструктивными объектами, поэтому их использование в теории вычислимости не требует особых уточнений. В то же время, действительные числа, которые необходимы для применения методов математического анализа, определяются неконструктивно. Предложенный далее метод позволяет построить конструктивные объекты, во многом схожие с обычными действительными числами. | В математике натуральные, целые и рациональные числа являются конструктивными объектами, поэтому их использование в теории вычислимости не требует особых уточнений. В то же время, действительные числа, которые необходимы для применения методов математического анализа, определяются неконструктивно. Предложенный далее метод позволяет построить конструктивные объекты, во многом схожие с обычными действительными числами. | ||
Версия 09:19, 1 сентября 2022
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
В математике натуральные, целые и рациональные числа являются конструктивными объектами, поэтому их использование в теории вычислимости не требует особых уточнений. В то же время, действительные числа, которые необходимы для применения методов математического анализа, определяются неконструктивно. Предложенный далее метод позволяет построить конструктивные объекты, во многом схожие с обычными действительными числами.
Содержание
Вычислимые числа
| Определение: |
| Действительное число называется вычислимым (англ. computable number), если существует вычислимая функция , такая, что для любого рационального . |
Свойства
| Теорема: |
Число вычислимо множество разрешимо. |
| Доказательство: |
|
function : for to if return if return
function : for if return
|
Важное замечание: построенное нами доказательство неконструктивно, так как мы не знаем наперед, рационально ли число , и уж тем более не пытаемся понять в случае его рациональности, чему именно оно равно. Но, так как мы ставим целью исследование свойств вычислимых чисел, а не явное построение соответствующих этим свойствам программ, то нам это доказательство полностью подходит.
С учетом только что доказанной теоремы, далее при проверке на принадлежность числа множеству будем писать просто .
| Теорема: |
Число вычислимо последовательность знаков представляющей его двоичной записи вычислима. |
| Доказательство: |
|
function : for to if else return
|
| Определение: |
| Последовательность рациональных чисел вычислимо сходится к , если существует вычислимая функция , такая, что для любого рационального выполняется . |
| Теорема: |
Число вычислимо существует вычислимая последовательность рациональных чисел, вычислимо сходящаяся к . |
| Доказательство: |
|
|
| Теорема: |
Пусть числа вычислимы. Тогда также вычислимы числа , , и . |
| Доказательство: |
|
В пределах этого доказательства будем обозначать функцию-приближение для произвольного вычислимого числа как . Для того, чтобы получить приближение для результата операции, нам нужно выразить функцию-результат через приближения для операндов. Заметим, что , для произвольных рациональных , значит, в качестве необходимых функций для и можно взять
и
соответственно (при подстановке в неравенство и вместо и каждый модуль в правой части не превосходит , поэтому не превосходит ). Далее, так как , где — наименьшее рациональное число, большее по модулю (т.е. ), то . Убедимся в вычислимости числа : , где . . Отсюда, также вычислимо. |
| Теорема: |
Корень многочлена с вычислимыми коэффициентами вычислим. |
| Доказательство: |
|
Пусть — корень многочлена с вычислимыми коэффициентами. Если , то его можно найти точно, перебрав все рациональные числа. Иначе, выберем некоторый интервал ( — вычислимы), достаточно малый, чтобы полином был монотонным на отрезках и . Заметим, что для вычислимого значение также вычислимо, так как в процессе его вычисления используются только операции, вычислимость значений которых уже была ранее доказана. Теперь, если полином имеет разные знаки на отрезках и , то для поиска можно воспользоваться двоичным поиском нуля на , иначе — троичным поиском экстремума на . Останавливая тот или иной алгоритм, когда текущая длина интервала становится меньше и возвращая левую границу в качестве ответа, получаем функцию . |
| Теорема: |
Предел вычислимо сходящейся вычислимой последовательности вычислимых чисел вычислим. |
| Доказательство: |
|
Пусть . Запишем формально данные нам условия:
Здесь функции , и все вычислимы. Построим функцию , которая дает приближение к с точностью до : function : n = returnТак как , оба слагаемых меньше (первое — по выбору , второе — в силу вычислимости ), то , и действительно вычисляет требуемое приближение. |
Перечислимые числа
| Определение: |
| Действительное число называется перечислимым снизу (англ. recursively enumerable number), если множество перечислимо. |
| Определение: |
| Действительное число называется перечислимым сверху, если множество перечислимо. |
Свойства
| Теорема: |
Число перечислимо снизу существует вычислимая возрастающая последовательность рациональных чисел, пределом которой является . |
| Доказательство: |
|
function : for n = to if return
|
| Теорема: |
Число вычислимо оно перечислимо сверху и снизу. |
| Доказательство: |
|
Обозначим множества и за и соответственно. Если рационально, то необходимые (полу)разрешители строятся тривиально. В противном случае, так как , то перечислимость множеств и равносильна разрешимости множества , которая, в свою очередь, равносильна вычислимости . |
Последовательность Шпеккера
Множество всех программ счётно, поэтому множество вычислимых чисел также счётно. Однако, множество вещественных чисел несчётно, значит, существуют невычислимые вещественные числа. Построим явно пример такого числа.
| Определение: |
| Пусть — некоторое перечислимое, но неразрешимое множество натуральных чисел. Пронумеруем его элементы. Последовательностью Шпеккера называется последовательность рациональных чисел, -ный член которой определяется как . |
Данная последовательность строго возрастает и ограничена числом , следовательно, она сходится по признаку Вейерштрасса.
| Теорема: |
Число перечислимо снизу, но невычислимо. |
| Доказательство: |
|
перечислимо снизу, как предел возрастающей вычислимой последовательности рациональных чисел. Допустим теперь, что — вычислимо. Пусть . Рассмотрим двоичную запись числа , если ее -ный знак после запятой равен 1, то , иначе — . Мы построили разрешитель для множества . Тем не менее, известно, что — неразрешимое множество, а это невозможно, значит, — невычислимо. |
См. также
Источники информации
- Верещагин Н. К., Шень А. — Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции — М.: МЦНМО, 1999 — стр. 14
- Computable number
- Specker sequence