Классические теоремы дифференциального исчисления — различия между версиями
м (→Формула конечных приращений Лагранжа) |
|||
| Строка 1: | Строка 1: | ||
| + | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
| + | |+ | ||
| + | |-align="center" | ||
| + | |'''НЕТ ВОЙНЕ''' | ||
| + | |-style="font-size: 16px;" | ||
| + | | | ||
| + | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
| + | |||
| + | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
| + | |||
| + | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
| + | |||
| + | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
| + | |||
| + | ''Антивоенный комитет России'' | ||
| + | |-style="font-size: 16px;" | ||
| + | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
| + | |-style="font-size: 16px;" | ||
| + | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
| + | |} | ||
| + | |||
[[Категория:Математический анализ 1 курс]] | [[Категория:Математический анализ 1 курс]] | ||
| Строка 141: | Строка 162: | ||
Докажем теорему для неопределённостей вида <math>\left(\frac{\infty}{\infty}\right)</math>. | Докажем теорему для неопределённостей вида <math>\left(\frac{\infty}{\infty}\right)</math>. | ||
| − | Пусть, для начала, предел отношения производных конечен и равен <math>A</math>. Тогда, при стремлении <math>x</math> к <math>a</math> справа, это отношение можно записать как <math>A+\alpha</math>, где <math>\alpha</math> | + | Пусть, для начала, предел отношения производных конечен и равен <math>A</math>. Тогда, при стремлении <math>x</math> к <math>a</math> справа, это отношение можно записать как <math>A+\alpha</math>, где <math>\alpha</math> — [[O-большое и o-малое|O]](1). Запишем это условие: |
: <math>\forall\varepsilon_{1}>0\, \exists \delta_{1}>0 : \forall x(0\le x-a<\delta_{1}\Rightarrow \left| \alpha(x)\right| <\varepsilon_{1})</math>. | : <math>\forall\varepsilon_{1}>0\, \exists \delta_{1}>0 : \forall x(0\le x-a<\delta_{1}\Rightarrow \left| \alpha(x)\right| <\varepsilon_{1})</math>. | ||
| Строка 148: | Строка 169: | ||
: <math>\frac{f(x)}{g(x)}=\frac{1-\frac{g(t)}{g(x)}}{1-\frac{f(t)}{f(x)}}\cdot\frac{f'(c)}{g'(c)}</math>. | : <math>\frac{f(x)}{g(x)}=\frac{1-\frac{g(t)}{g(x)}}{1-\frac{f(t)}{f(x)}}\cdot\frac{f'(c)}{g'(c)}</math>. | ||
| − | Для <math>x</math>, достаточно близких к <math>a</math>, выражение имеет смысл; предел первого множителя правой части равен единице (так как <math>f(t)</math> и <math>g(t)</math> | + | Для <math>x</math>, достаточно близких к <math>a</math>, выражение имеет смысл; предел первого множителя правой части равен единице (так как <math>f(t)</math> и <math>g(t)</math> — константы, а <math>f(x)</math> и <math>g(x)</math> стремятся к бесконечности). Значит, этот множитель равен <math>1+\beta</math>, где <math>\beta</math> — бесконечно малая функция при стремлении <math>x</math> к <math>a</math> справа. Выпишем определение этого факта, используя то же значение <math>\varepsilon</math>, что и в определении для <math>\alpha</math>: |
: <math>\forall \varepsilon_{1}>0\, \exists \delta_{2}>0\ : \forall x(0\le x-a<\delta_{2}\Rightarrow \left| \beta(x) \right| <\varepsilon_{1})</math>. | : <math>\forall \varepsilon_{1}>0\, \exists \delta_{2}>0\ : \forall x(0\le x-a<\delta_{2}\Rightarrow \left| \beta(x) \right| <\varepsilon_{1})</math>. | ||
Версия 09:24, 1 сентября 2022
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Теорема Ферма о значении производной в экстремальной точке
| Определение: |
Точки минимума и максимума:
|
Сами значения называются соответственно локальным минимумом и локальным максимумом.
| Теорема (Ферма): |
Пусть существует и дифференцируема в , и — точка локального экстремума. Тогда |
| Доказательство: |
|
Рассмотрим случай, когда — точка локального минимума. Случай с локальным максимумом доказывается аналогично. ; рассмотрим . Заметим, что, по определению локального минимума, . Возможны 2 случая для : |
Замечание: обратная теорема не всегда верна, например, но — не экстремум.
| Определение: |
| Корень уравнения называется стационарной точкой. |
Теорема Ролля о нулях производной
| Теорема (Ролль): |
Пусть непрерывна на , дифференцируема на и . Тогда существует точка , такая, что . |
| Доказательство: |
|
непрерывна на , значит, у нее на этом отрезке существуют минимум и максимум. Пусть — точка минимума, — точка максимума. Рассмотрим 2 случая: 1) Обе точки граничные, то есть находятся на концах отрезка. Тогда, так как , то . Значит, на — константа, то есть 2) Хотя бы одна из точек не граничная. Пусть это, например, . Тогда по теореме Ферма . |
Замечание: для непрерывной функции на заданном отрезке ей принимаются все значения между двумя граничными значениями. Такое же свойство выполняется и для ее производной, хотя она может быть уже разрывной.
Теорема Дарбу о промежуточных значениях производной
| Теорема (Дарбу): |
Пусть дифференцируема на . Тогда |
| Доказательство: |
|
Для определенности считаем, что , обратный случай доказывается аналогично. Рассмотрим вспомогательную функцию . По определению производной, При Аналогично рассмотрим : при Функция — дифференцируема, а значит, также и непрерывна на , поэтому на этом отрезке существуют минимальное и максимальное значения функции. Из двух предыдущих неравенств следует, что минимальное значение достигается не в граничной точке. Пусть оно достигается в точке , тогда по теореме Ферма в этой точке . Значит, . |
Формула конечных приращений Лагранжа
| Теорема (Лагранж): |
Пусть непрерывна на и дифференцируема на . Тогда |
| Доказательство: |
|
Рассмотрим вспомогательную функцию . Заметим, что , значит, по теореме Ролля, . Но , значит, |
Формула конечных приращений Коши
| Теорема (Коши): |
Пусть непрерывны на и дифференцируемы на , . Тогда . |
| Доказательство: |
|
Для начала, докажем, что дробь в левой части равенства определена: по теореме Лагранжа, для некоторого , по условию, правая часть не равна нулю, значит, . Рассмотрим вспомогательную функцию . , значит, по теореме Ролля, . Но , значит
|
Замечание: при получаем частный случай формулы Коши — формулу Лагранжа.
Правило Лопиталя раскрытия неопределенностей
Из формулы Коши можно получить раскрытие неопределенностей вида , (в числителе и знаменателе дроби получаются нулевые или бесконечные значения). Это правило называют правилом Лопиталя:
| Теорема (правило Лопиталя): |
Если при , то |
| Доказательство: |
|
Доопределим по непрерывности значения функций в точке : . По формуле Коши для малого отрезка выполняется равенство . Подставляя туда , получаем требуемое равенство. Случай с неопределенностью вида Пусть, для начала, предел отношения производных конечен и равен . Тогда, при стремлении к справа, это отношение можно записать как , где — O(1). Запишем это условие:
Зафиксируем из отрезка и применим теорему Коши ко всем из отрезка :
Для , достаточно близких к , выражение имеет смысл; предел первого множителя правой части равен единице (так как и — константы, а и стремятся к бесконечности). Значит, этот множитель равен , где — бесконечно малая функция при стремлении к справа. Выпишем определение этого факта, используя то же значение , что и в определении для :
Получили, что отношение функций представимо в виде , и . По любому данному можно найти такое , чтобы модуль разности отношения функций и был меньше , значит, предел отношения функций действительно равен . Если же предел бесконечен (допустим, он равен плюс бесконечности), то
|