Изменения

Перейти к: навигация, поиск

Преобразование Адамара

515 байт добавлено, 19:03, 4 сентября 2022
м
rollbackEdits.php mass rollback
Если представлять состояние квантового кубита как точку на окружности, то преобразование Адамара равносильно симметричному относительно луча под углом <tex> \pi/8 </tex> отражению точки.
 
Заметим, что если применить преобразование Адамара к каждому кубиту <tex>m</tex>-кубитовой системы, то для каждого <tex> x \in \{0,1\}^{m} </tex> будет: <br><br> <tex> |x\rangle=(|0\rangle+(-1)^{x_1} |1\rangle)(|0\rangle+(-1)^{x_2 }|1\rangle)...(|0\rangle+(-1)^{x_m}|1\rangle) = \sum \limits_{y \in \{0,1\}^m } ( \prod \limits_{i : y^i = 1} (-1)^{x_i }) = \sum \limits_{y \in \{0,1\}^m } (-1)^{x \land y}|y \rangle </tex>.
1632
правки

Навигация