Остаток формулы Тейлора в интегральной форме — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
Строка 1: Строка 1:
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 
|+
 
|-align="center"
 
|'''НЕТ ВОЙНЕ'''
 
|-style="font-size: 16px;"
 
|
 
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 
 
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 
 
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 
 
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 
 
''Антивоенный комитет России''
 
|-style="font-size: 16px;"
 
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 
|-style="font-size: 16px;"
 
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 
|}
 
 
 
{{В разработке}}
 
{{В разработке}}
 
[[Категория:Математический анализ 1 курс]]
 
[[Категория:Математический анализ 1 курс]]

Текущая версия на 19:03, 4 сентября 2022

Эта статья находится в разработке!
Утверждение:
Пусть в окрестности точки [math]x_0[/math] функция [math]f[/math] [math]n + 1[/math] раз дифференцируема и её [math](n + 1)[/math]-я производная интегрируема. Тогда в окрестности точки [math]x_0[/math] [math]f(x) = \sum\limits_{k = 0}^n \frac{f^{(k)} (x_0)}{k!}(x - x_0)^k + \frac1{n!} \int\limits_{x_0}^x f^{(n + 1)}(t) (x-t)^n dt[/math]. Эта формула называется формулой Тейлора с записью остатка в интегральной форме.
[math]\triangleright[/math]

Докажем по индукции.

База: [math]n = 0[/math].

[math] f(x) = \frac{f^{(0)} (x_0)}{0!}(x - x_0)^0 + \frac{1}{0!}\int\limits_{x_0}^x f'(t) (x - t)^0 dt [/math]. Заметим, что это формула Ньютона-Лейбница:

[math] f(x) = f^{(0)}(x_0) + \int\limits_{x_0}^x f'(t) dt [/math]

[math] f(x) - f(x_0) = \int\limits_{x_0}^x f'(t) dt [/math]

Проделаем шаг [math]n \to n + 1[/math]:

Так как формула верна для [math]n[/math] то [math]f[/math] можно записать как [math]f(x) = \sum\limits_{k = 0}^n \frac{f^{(k)} (x_0)}{k!}(x - x_0)^k + \frac1{n!} \int\limits_{x_0}^x f^{(n + 1)}(t) (x-t)^n dt[/math].

Теперь преобразуем интеграл, интегрируя по частям:

[math]\frac1{n!} \int\limits_{x_0}^x f^{(n + 1)} (t) (x - t)^n dt = [/math](внося [math](x - t)^n[/math] под знак дифференциала) [math]\frac{1}{(n + 1)!} \int\limits_{x_0}^x f^{(n + 1)}(t) d(-(x-t)^{n + 1}) = [/math] [math]\frac1{(n+1)!} (f^{(n + 1)}(t) (-(x-t)^{n + 1})) |^x_{x_0} + \frac1{(n + 1)!} \int\limits_{x_0}^x f^{(n + 2)}(t) (x - t)^{n + 1} dt = [/math] [math]\frac1{(n+1)!} f^{(n + 1)}(x_0) (x - x_0)^{n + 1} + \frac1{(n + 1)!}\int\limits_{x_0}^x f^{(n + 2)}(t) (x - t)^{n + 1} dt[/math]

По индукции получаем, что формула верна для любого [math]n[/math].
[math]\triangleleft[/math]