Свойства перечислимых языков. Теорема Успенского-Райса — различия между версиями
ExileHell (обсуждение | вклад) (→Альтернативное доказательство с использованием теоремы о рекурсии) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 3 промежуточные версии 3 участников) | |||
Строка 59: | Строка 59: | ||
\end{cases} </tex> | \end{cases} </tex> | ||
− | |||
'''function''' <tex>V_n</tex>(x): | '''function''' <tex>V_n</tex>(x): | ||
'''if''' <tex>p_X</tex>(n) == 1 | '''if''' <tex>p_X</tex>(n) == 1 | ||
'''return''' <tex>p_S</tex>(x) | '''return''' <tex>p_S</tex>(x) | ||
'''while''' ''true'' | '''while''' ''true'' | ||
− | |||
Получили, что если <tex>n \in X</tex>, то <tex>V_n \in L(\overline A)</tex>, а если <tex>n \notin X</tex>, то <tex>V_n \in L(A)</tex>. Таким образом, <tex>n \in X \iff V_n \in L(\overline A)</tex>. | Получили, что если <tex>n \in X</tex>, то <tex>V_n \in L(\overline A)</tex>, а если <tex>n \notin X</tex>, то <tex>V_n \in L(A)</tex>. Таким образом, <tex>n \in X \iff V_n \in L(\overline A)</tex>. | ||
Строка 82: | Строка 80: | ||
Теперь допустим, что язык <tex> L_A </tex> разрешим. Тогда напишем такую программу: | Теперь допустим, что язык <tex> L_A </tex> разрешим. Тогда напишем такую программу: | ||
− | < | + | <tex>propA(code){:}</tex> |
− | |||
// программа, разрешающее свойство языка <tex> A </tex> | // программа, разрешающее свойство языка <tex> A </tex> | ||
− | f(x): | + | <tex>f(x){:}</tex> |
// такая программа <tex> f </tex>, что <tex>f \in A </tex>; существует потому что <tex> A </tex> {{---}} нетривиальное свойство | // такая программа <tex> f </tex>, что <tex>f \in A </tex>; существует потому что <tex> A </tex> {{---}} нетривиальное свойство | ||
− | g(x): | + | <tex>g(x){:}</tex> |
// такая программа <tex> g </tex>, что <tex>g \notin A </tex>; существует потому что <tex> A </tex> {{---}} нетривиальное свойство | // такая программа <tex> g </tex>, что <tex>g \notin A </tex>; существует потому что <tex> A </tex> {{---}} нетривиальное свойство | ||
− | p(x): | + | <tex>p(x){:}</tex> |
− | '''if''' propA(getSrc()) | + | '''if''' <tex>propA(\mathrm{getSrc()})</tex> |
− | '''return''' g(x) | + | '''return''' <tex>g(x)</tex> |
'''else''' | '''else''' | ||
− | '''return''' f(x) | + | '''return''' <tex>f(x)</tex> |
− | </ | ||
Если <tex> p </tex> не удовлетворяет свойству <tex> A </tex>, тогда будет выполняться всегда вторая ветка, и <tex> L(p) = L(f) </tex>. Но язык программы <tex> f </tex> принадлежит <tex> A </tex>. Получили противоречие. | Если <tex> p </tex> не удовлетворяет свойству <tex> A </tex>, тогда будет выполняться всегда вторая ветка, и <tex> L(p) = L(f) </tex>. Но язык программы <tex> f </tex> принадлежит <tex> A </tex>. Получили противоречие. |
Текущая версия на 19:05, 4 сентября 2022
Содержание
Свойства языков
Рассмотрим множество всех перечислимых языков .
Определение: |
Свойством языков (англ. property of languages) называется множество | .
Определение: |
Свойство называется тривиальным (англ. trivial), если | или .
Определение: |
Язык свойства (англ. language of property) | — множество программ, языки которых обладают этим свойством: .
Отметим, что принадлежность программы языку свойства можно выразить двумя эквивалентными утверждениями:
Далее в конспекте будет употребляться
.
Определение: |
Свойство разрешимым. | называется разрешимым (англ. recursive), если является
Примеры
Примеры свойств:
- Язык должен содержать слово hello.
- Язык должен содержать хотя бы одно простое число.
Псевдокод для разрешителя
, где// — полуразрешитель некоторого языка return true
Псевдокод для программы в общем случае, то есть для проверки того, что язык удовлетворяет свойству :
return
Псевдокод полуразрешителя для языка свойства из первого примера:
теореме Райса-Шапиро) return ('hello')// — перечислимый язык в общем случае, поэтому — полуразрешитель (по
Теорема Успенского-Райса
Теорема: |
Язык никакого нетривиального свойства не является разрешимым. |
Доказательство
Пусть
— всегда зацикливающийся алгоритм.Рассмотрим случай, когда
.Приведём доказательство от противного. Предположим, что
разрешимо.Рассмотрим язык
, такой что (такой язык существует, так как — нетривиально). Тогда .Рассмотрим также произвольное перечислимое неразрешимое множество
. Пусть — полуразрешитель .Зафиксируем произвольное
и построим следующую функциюfunction(x): if (n) == 1 return (x) while true
Получили, что если
, то , а если , то . Таким образом, .Так как
— разрешимо, то можно проверить для любого , лежит ли оно в . Но это тоже самое, что и проверка . Тогда можно для каждого проверить, лежит ли оно в , а следовательно и построить разрешитель для . Так как — неразрешимо, получили противоречие.Теперь рассмотрим случай, когда
.Так как
— нетривиально (как дополнение к нетривиальному множеству), то по первой части доказательства оно неразрешимо. Следовательно, также неразрешимо.Альтернативное доказательство с использованием теоремы о рекурсии
По теореме о рекурсии, программа может знать свой исходный код. Значит, в неё можно написать функцию , которая вернёт строку — исходный код программы.
— разрешимое семейство языков.
— множество программ, удовлетворяющих св-ву .
Теперь допустим, что язык
разрешим. Тогда напишем такую программу:// программа, разрешающее свойство языка // такая программа , что ; существует потому что — нетривиальное свойство // такая программа , что ; существует потому что — нетривиальное свойство if return else return
Если
не удовлетворяет свойству , тогда будет выполняться всегда вторая ветка, и . Но язык программы принадлежит . Получили противоречие.Если
удовлетворяет свойству , то , а . Опять получили противоречие.См. также
Источники информации
- Wikipedia — Rice's theorem
- Rice, H. G. — Classes of Recursively Enumerable Sets and Their Decision Problems." — Trans. Amer. Math. Soc. 74, 358-366, 1953.
- Хопкрофт Д., Мотванн Р., Ульманн Д. —Введение в теорию автоматов, языков и вычислений — стр. 397.