Задача о наибольшей общей возрастающей последовательности — различия между версиями
|  (→Решение за время O(N4)) | м (rollbackEdits.php mass rollback) | ||
| (не показано 47 промежуточных версий 6 участников) | |||
| Строка 1: | Строка 1: | ||
| − | Даны два массива: <tex> a[1..n] </tex> и <tex> b[1..m] </tex>. Требуется найти их ''наибольшую общую возрастающую подпоследовательность (НОВП).'' | + | {{Шаблон: Задача | 
| + | |definition =  | ||
| + | Даны два массива: <tex> a[1..n] </tex> и <tex> b[1..m] </tex>. Требуется найти их ''наибольшую общую возрастающую подпоследовательность (НОВП).''}} | ||
| {{Определение | {{Определение | ||
| |definition =   | |definition =   | ||
| − | '''Наибольшая общая возрастающая подпоследовательность  | + | '''Наибольшая общая возрастающая подпоследовательность, НОВП''' (англ. ''longest common increasing subsequence, LCIS'')  массива <tex> A </tex> длины <tex> n </tex> и массива <tex> B </tex> длины <tex> m </tex> — это последовательность <tex> X = \left \langle x_1, x_2, \ldots, x_k \right \rangle </tex> такая, что <tex> x_1 < x_2 < \ldots < x_k </tex>, <tex> X </tex> является ''подпоследовательностью'' <tex> A </tex> и <tex> B </tex>. }} | 
| − | ==Решение за время O( | + | ==Решение за время O(n<sup>2</sup> × m<sup>2</sup>)== | 
| − | Построим следующую динамику: <tex> d[i][j] </tex> - это длина наибольшей возрастающей подпоследовательности массивов <tex> a </tex> и <tex> b </tex>, последний элемент которой <tex> a[i] </tex> и <tex> b[j] (a[i] = b[j]) </tex>. Будем заполнять <tex> d[i][j] </tex> сначала по увеличению <tex> i </tex>, а при равенстве по увеличению <tex> j </tex>. Ответом на задачу будет максимум из всех элементов <tex> d[i][j] </tex> (где <tex> i = 1...n </tex>, <tex> j = 1...m. </tex>) | + | Построим следующую динамику: <tex> d[i][j] </tex> {{---}} это длина наибольшей возрастающей подпоследовательности массивов <tex> a </tex> и <tex> b </tex>, последний элемент которой <tex> a[i] </tex> и <tex> b[j] (a[i] = b[j]) </tex>. Будем заполнять <tex> d[i][j] </tex> сначала по увеличению <tex> i </tex>, а при равенстве по увеличению <tex> j </tex>. Ответом на задачу будет максимум из всех элементов <tex> d[i][j] </tex> (где <tex> i = 1...n </tex>, <tex> j = 1...m. </tex>) | 
| Заполнять <tex> d </tex> будем следующим образом: на очередном шаге сравниваем элементы <tex> a[i] </tex> и <tex> b[j] </tex>: | Заполнять <tex> d </tex> будем следующим образом: на очередном шаге сравниваем элементы <tex> a[i] </tex> и <tex> b[j] </tex>: | ||
| *Если <tex> a[i] \neq b[j] </tex>, то <tex> d[i][j] = 0 </tex> (так как нет НОВП, оканчивающейся в разных элементах). | *Если <tex> a[i] \neq b[j] </tex>, то <tex> d[i][j] = 0 </tex> (так как нет НОВП, оканчивающейся в разных элементах). | ||
| − | *Если <tex> a[i] = b[j] </tex>, то эти элементы могут быть частью НОВП. Переберём, какие элементы стояли перед ними в массивах <tex> a </tex> и <tex> b </tex>. Заметим, что предыдущие значения <tex> d </tex> уже известны, тогда очередное значение <tex> d[i][j] = max | + | *Если <tex> a[i] = b[j] </tex>, то эти элементы могут быть частью НОВП. Переберём, какие элементы стояли перед ними в массивах <tex> a </tex> и <tex> b </tex>. Заметим, что предыдущие значения <tex> d </tex> уже известны, тогда очередное значение <tex dpi="130"> d[i][j] = \max\limits_{k = 1..i-1 \atop l = 1..j-1} d[k][l] + 1 </tex> при условии, что <tex> a[k] = b[l]. </tex> | 
| − | Для восстановления подпоследовательности можно хранить массив предков <tex> prev[1..n] </tex> массива <tex> a: prev[i] </tex> - индекс предыдущего элемента НОВП, которая оканчивается в <tex> a[i] </tex>. | + | Длина НОВП будет в элементе с максимальным значением <tex> d[i][j] </tex>. Для восстановления подпоследовательности можно хранить массив предков <tex> prev[1..n] </tex> массива <tex> a: prev[i] </tex> {{---}} индекс предыдущего элемента НОВП, которая оканчивается в <tex> a[i] </tex>. | 
| − |   vector<int> '''LCIS''' | + |   '''vector<int>''' LCIS(a: '''int[n]''', b: '''int[m]''') | 
| − | + |    '''for''' i = 1 '''to''' n   | |
| − | + |      '''for''' j = 1 '''to''' m | |
| − | + |        '''if''' a[i] == b[j] | |
| − | + |          d[i][j] = 1 <font color=green> // НОВП как минимум 1, состоит из одного элемента a[i] <-> b[j] </font> | |
| − | + |           '''for''' k = 1 '''to''' i - 1 | |
| − | + |             '''for''' l = 1 '''to''' j - 1 | |
| − |           '''for''' k = 1 | ||
| − |             '''for''' l = 1 | ||
|               '''if''' a[k] == b[l] '''and''' a[k] < a[i] '''and''' d[i][j] < d[k][l] + 1 |               '''if''' a[k] == b[l] '''and''' a[k] < a[i] '''and''' d[i][j] < d[k][l] + 1 | ||
|                 d[i][j] = d[k][l] + 1 |                 d[i][j] = d[k][l] + 1 | ||
|                 prev[i] = k |                 prev[i] = k | ||
| − | + |    <font color=green>// восстановление</font> | |
| − | + |    b_i = 1 | |
| − | + |    b_j = 1 | |
| − | + |    '''for''' i = 1 '''to''' n | |
| − | + |      '''for''' j = 1 '''to''' m   | |
| − | + |        '''if''' d[b_i][b_j] < d[i][j] | |
| − | + |          b_i = i | |
| − | + |          b_j = j | |
| − | + |    pos = b_i   | |
| − | + |    <font color=green>// проходим по массиву a, выписывая элементы НОВП</font> | |
| − | + |    answer: '''vector<int>''' | |
| − | + |    '''while''' pos <tex> \neq </tex> 0 | |
| − | + |      answer.pushBack(a[pos]) | |
| − | + |      pos = prev[pos] | |
| + |    '''return''' answer | ||
| + | |||
| + | ==Решение за время O(n<sup>2</sup> × m)== | ||
| + | Улучшим предыдущее решение. Пусть теперь <tex> d[i][j] </tex> {{---}} динамика, в которой элемент <tex> a[i] </tex> по-прежнему последний представитель НОВП массива <tex> a </tex>, а <tex> b[j] </tex> может не быть быть последним представителем массива <tex> b </tex>: | ||
| + | *Если <tex> a[i] \neq b[j] </tex>, будем "протаскивать" последнее удачное сравнение в динамике: <tex> d[i][j] = d[i][j-1] </tex> (понять это можно так: <tex> a[i] \neq b[j] </tex> , поэтому <tex> b[j] </tex> не последний представитель НОВП из массива <tex> b </tex>, а значит предыдущий элемент НОВП находится в префиксе <tex> b[1..j-1] </tex>, но <tex> d[i][j-1] </tex> уже посчитан). | ||
| + | *Если <tex> a[i] = b[j] </tex>, то одним дополнительным циклом пробежим по <tex> a </tex> и найдём предыдущий элемент НОВП, оканчивающейся в <tex> a[i] </tex> (он меньше <tex> a[i] </tex>). Из подходящих элементов выберем тот, для которого <tex> d[k][j] </tex> {{---}} максимальна. | ||
| − | + | <tex dpi="120"> d[i][j] = \max\limits_{k = 1..i-1} d[k][j] + 1 </tex> при условии, что <tex> a[k] < a[i].</tex> | |
| − | |||
| − | |||
| − | |||
| − | <tex> d[i][ | + | Длина НОВП будет в элементе с максимальным значением <tex> d[i][m] </tex>. Для восстановления ответа будем хранить массив предков по массиву <tex> a </tex>, как и в предыдущем решении. | 
| − |   '''for''' i = 1 | + |   '''vector<int>''' LCIS(a: '''int[n]''', b: '''int[m]''') | 
| − | + |    '''for''' i = 1 '''to''' n   | |
| + |      '''for''' j = 1 '''to''' m | ||
|         '''if''' a[i] == b[j] |         '''if''' a[i] == b[j] | ||
| − | + |          d[i][j] = 1 <font color=green>// НОВП как минимум 1, состоит из одного элемента a[i] <-> b[j]</font> | |
| − | + |          '''for''' k = 1 '''to''' i - 1 | |
| − | + |            '''if''' a[k] < a[i] '''and''' d[i][j] < d[k][j] + 1 | |
| − | + |              d[i][j] = d[k][j] + 1 | |
| − | + |              prev[i] = k | |
|         '''else''' |         '''else''' | ||
| − | + |          d[i][j] = d[i][j - 1]   | |
| − | + |    <font color=green>// восстановление</font> | |
| − | + |    pos = 1 <font color=green>// ищем элемент c максимальным d[pos][m]</font> | |
| − | + |    '''for''' i = 1 '''to''' n | |
| − | + |      '''if''' d[pos][m] < d[i][m] | |
| − | + |         pos = i | |
| − | + |    <font color=green>// проходим по массиву a, выписывая элементы НОВП</font>  | |
| − | + |    answer: '''vector<int>''' | |
| − | + |    '''while''' pos <tex> \neq </tex> 0 | |
| − | + |      answer.pushBack(a[pos]) | |
| − | + |      pos = prev[pos] | |
| + |    '''return''' answer | ||
| − | ==Решение за время O( | + | ==Решение за время O(n × m)== | 
| − | + | Модифицируем предыдущее решение, добавив небольшую ''хитрость''. Теперь <tex> d[i][j] </tex> {{---}} это длина наибольшей общей возрастающей подпоследовательности префиксов <tex> a[1..i] </tex> и <tex> b[1..j] </tex>, причем элемент <tex> b[j] </tex> {{---}} последний представитель НОВП массива <tex> b </tex>, а <tex> a[i] </tex> может не быть последним в массиве <tex> a </tex>. Вычислять <tex> d </tex> будем всё так же: сначала по увеличению <tex> i </tex>, а при равенстве {{---}} по увеличению <tex> j </tex>. Тогда для очередного значения <tex> d[i][j] </tex> есть два варианта: | |
| + | *<tex> a[i] </tex> не входит в НОВП. Тогда <tex> d[i][j] = d[i-1][j] </tex>: значение динамики уже посчитано на префиксе <tex> a[1..i-1] </tex>. | ||
| + | *<tex> a[i] </tex> входит в НОВП. Это значит, что <tex> a[i] = b[j] </tex>, то есть для подсчёта <tex> d[i][j] </tex> нужно пробегать циклом по <tex> b </tex> в поисках элемента <tex> b[k] < b[j] </tex> с наибольшим значением <tex> d[i-1][k] </tex>. Но мы считаем <tex> d </tex> сначала по увеличению <tex> i </tex>, поэтому будем считать <tex> a[i] </tex> ''фиксированным''. Чтобы не запускать цикл при каждом равенстве <tex> a[i] </tex> элементу <tex> b[k] </tex>, в дополнительной переменной <tex> best </tex> будем хранить "лучший" элемент (и его индекс <tex> ind </tex> в массиве <tex> b </tex>) такой, что этот элемент строго меньше <tex> a[i] </tex> (а также меньше <tex> b[k] </tex>) и значение динамики для него максимально: <tex> b[ind] < a[i] = b[j] </tex> и <tex> best = d[i-1][ind] \rightarrow max. </tex> | ||
| + | |||
| + |  '''vector<int>''' LCIS(a: '''int[n]''', b: '''int[m]''') | ||
| + |    '''for''' i = 1 '''to''' n | ||
| + |      ind = 0 <font color=green>// позиция "лучшего" элемента в массиве b</font> | ||
| + |      best = 0 <font color=green>// значение динамики для "лучшего" элемента</font> | ||
| + |      '''for''' j = 1 '''to''' m	 | ||
| + |        d[i][j] = d[i - 1][j] <font color=green>// НОВП на a[1..i - 1] и b[1..j] (без элемента a[i])</font> | ||
| + |        '''if''' a[i] == b[j] '''and''' d[i - 1][j] < best + 1 <font color=green>// используем a[i]-й элемент для увеличения НОВП</font> | ||
| + |          d[i][j] = best + 1                          | ||
| + |          prev[j] = ind                             | ||
| + |        '''if''' a[i] > b[j] '''and''' d[i - 1][j] > best <font color=green>// при следующем равенстве a[i] == b[j']</font> | ||
| + |          best = d[i - 1][j] <font color=green>// в best будет храниться "лучший" элемент</font>          | ||
| + |          ind = j <font color=green>// b[ind] < b[j'] и d[i-1][ind] <tex> \rightarrow </tex> max</font>  | ||
| + |    <font color=green>// восстановление (по массиву b)</font> | ||
| + |    pos = 1 <font color=green>// ищем лучший элемент d[n][pos] <tex> \rightarrow </tex> max</font>  | ||
| + |    '''for''' j = 1 '''to''' m | ||
| + |      '''if''' d[n][pos] < d[n][j] | ||
| + |        pos = j | ||
| + |    <font color=green>// проходим по массиву b, выписывая элементы НОВП</font>  | ||
| + |    answer: '''vector<int>''' | ||
| + |    '''while''' pos <tex> \neq </tex> 0 | ||
| + |      answer.pushBack(b[pos]) | ||
| + |      pos = prev[pos] | ||
| + |    '''return''' answer | ||
| − | + | === Доказательство оптимальности === | |
| − | + | В данной задаче используется принцип оптимальности на префиксе. Использование дополнительной переменной для подсчета всех случаев <tex> a[i] = b[j] </tex> не влияет на корректность алгоритма {{---}} это всего лишь уловки реализации. Поэтому покажем, что для вычисления очередного значения <tex> d[i][j] </tex> мы используем оптимальность на подзадачах и обращаемся к уже посчитанным значениям.  | |
| − | + | Напомним, как обозначается динамика: <tex> d[i][j] </tex> {{---}} это НОВП на префиксах <tex> a[1..i] </tex> и <tex> b[1..j] </tex>, где последним элементом НОВП является элемент <tex> b[j] </tex>, а <tex> a[i] </tex> может не быть равен <tex> b[j] </tex> (то есть элемент <tex> a[i'] = b[j] </tex> лежит где-то в префиксе <tex> a[1..i] </tex>). Итак, для <tex> d[i][j] </tex> есть два варианта: | |
| − | + | * <tex> a[i] \neq b[j] </tex>, тогда <tex> a[i] </tex> не влияет на результат, и последний элемент НОВП <tex> a[i'] = b[j] </tex>  лежит в <tex> a[1..i-1] </tex>. | |
| − | + | * <tex> a[i] = b[j] </tex>, тогда <tex> a[i] </tex> и <tex> b[j] </tex> {{---}} последние элементы НОВП префиксов <tex> a[1..i] </tex> и <tex> b[1..j] </tex>: <tex> b[j] </tex> {{---}} по определению динамики, а <tex> a[i] </tex> как элемент, который может стать последним, не ухудшая результат. Действительно, последовательность строго возрастает, поэтому если в префиксе <tex> a[1..i-1] </tex> есть элемент <tex> a[k] = b[j] </tex>, то его можно заменить на элемент <tex> a[i] </tex> без уменьшения длины НОВП. Если же в <tex> a[1..i-1] </tex> такого элемента нет, то <tex> a[i] </tex> {{---}} единственный из возможных вариантов. Итак, <tex> a[i] </tex> и <tex> b[j] </tex> {{---}} последние элементы НОВП. Значит, начало НОВП (<tex> d[i][j] </tex>) лежит в префиксах <tex> a[1..i-1] </tex> и <tex> b[1..j-1] </tex> (значения для которых уже посчитаны). Мы ищем элемент <tex> b[k] < b[j] </tex> с лучшей динамикой <tex> d[i-1][k] </tex>, что удовлетворяет условию возрастания последовательности и автоматически гарантирует, что конец такой НОВП лежит в префиксе <tex> a[1..i-1] </tex>. | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| == См. также == | == См. также == | ||
| Строка 100: | Строка 113: | ||
| *[[Задача о наибольшей возрастающей подпоследовательности]] | *[[Задача о наибольшей возрастающей подпоследовательности]] | ||
| − | == Источники == | + | == Источники информации == | 
| − | *http://codeforces.ru/contest/10/problem/D Codeforces - Задача о наибольшей общей возрастающей подпоследовательности | + | * [http://codeforces.ru/contest/10/problem/D Codeforces {{---}} Задача о наибольшей общей возрастающей подпоследовательности] | 
| [[Категория:Дискретная математика и алгоритмы]] | [[Категория:Дискретная математика и алгоритмы]] | ||
| [[Категория:Динамическое программирование]] | [[Категория:Динамическое программирование]] | ||
| + | [[Категория:Другие задачи динамического программирования]] | ||
Текущая версия на 19:05, 4 сентября 2022
| Задача: | 
| Даны два массива: и . Требуется найти их наибольшую общую возрастающую подпоследовательность (НОВП). | 
| Определение: | 
| Наибольшая общая возрастающая подпоследовательность, НОВП (англ. longest common increasing subsequence, LCIS) массива длины и массива длины — это последовательность такая, что , является подпоследовательностью и . | 
Содержание
Решение за время O(n2 × m2)
Построим следующую динамику: — это длина наибольшей возрастающей подпоследовательности массивов и , последний элемент которой и . Будем заполнять сначала по увеличению , а при равенстве по увеличению . Ответом на задачу будет максимум из всех элементов (где , )
Заполнять будем следующим образом: на очередном шаге сравниваем элементы и :
- Если , то (так как нет НОВП, оканчивающейся в разных элементах).
- Если , то эти элементы могут быть частью НОВП. Переберём, какие элементы стояли перед ними в массивах и . Заметим, что предыдущие значения уже известны, тогда очередное значение при условии, что
Длина НОВП будет в элементе с максимальным значением . Для восстановления подпоследовательности можно хранить массив предков массива — индекс предыдущего элемента НОВП, которая оканчивается в .
vector<int> LCIS(a: int[n], b: int[m])
  for i = 1 to n 
    for j = 1 to m
      if a[i] == b[j]
        d[i][j] = 1  // НОВП как минимум 1, состоит из одного элемента a[i] <-> b[j] 
        for k = 1 to i - 1
          for l = 1 to j - 1
            if a[k] == b[l] and a[k] < a[i] and d[i][j] < d[k][l] + 1
              d[i][j] = d[k][l] + 1
              prev[i] = k
  // восстановление
  b_i = 1
  b_j = 1
  for i = 1 to n
    for j = 1 to m 
      if d[b_i][b_j] < d[i][j]
        b_i = i
        b_j = j
  pos = b_i 
  // проходим по массиву a, выписывая элементы НОВП
  answer: vector<int>
  while pos  0
    answer.pushBack(a[pos])
    pos = prev[pos]
  return answer
Решение за время O(n2 × m)
Улучшим предыдущее решение. Пусть теперь — динамика, в которой элемент по-прежнему последний представитель НОВП массива , а может не быть быть последним представителем массива :
- Если , будем "протаскивать" последнее удачное сравнение в динамике: (понять это можно так: , поэтому не последний представитель НОВП из массива , а значит предыдущий элемент НОВП находится в префиксе , но уже посчитан).
- Если , то одним дополнительным циклом пробежим по и найдём предыдущий элемент НОВП, оканчивающейся в (он меньше ). Из подходящих элементов выберем тот, для которого — максимальна.
при условии, что
Длина НОВП будет в элементе с максимальным значением . Для восстановления ответа будем хранить массив предков по массиву , как и в предыдущем решении.
vector<int> LCIS(a: int[n], b: int[m])
  for i = 1 to n 
    for j = 1 to m
      if a[i] == b[j]
        d[i][j] = 1 // НОВП как минимум 1, состоит из одного элемента a[i] <-> b[j]
        for k = 1 to i - 1
          if a[k] < a[i] and d[i][j] < d[k][j] + 1
            d[i][j] = d[k][j] + 1
            prev[i] = k
      else
        d[i][j] = d[i][j - 1] 
  // восстановление
  pos = 1 // ищем элемент c максимальным d[pos][m]
  for i = 1 to n
    if d[pos][m] < d[i][m]
      pos = i
  // проходим по массиву a, выписывая элементы НОВП 
  answer: vector<int>
  while pos  0
    answer.pushBack(a[pos])
    pos = prev[pos]
  return answer
Решение за время O(n × m)
Модифицируем предыдущее решение, добавив небольшую хитрость. Теперь — это длина наибольшей общей возрастающей подпоследовательности префиксов и , причем элемент — последний представитель НОВП массива , а может не быть последним в массиве . Вычислять будем всё так же: сначала по увеличению , а при равенстве — по увеличению . Тогда для очередного значения есть два варианта:
- не входит в НОВП. Тогда : значение динамики уже посчитано на префиксе .
- входит в НОВП. Это значит, что , то есть для подсчёта нужно пробегать циклом по в поисках элемента с наибольшим значением . Но мы считаем сначала по увеличению , поэтому будем считать фиксированным. Чтобы не запускать цикл при каждом равенстве элементу , в дополнительной переменной будем хранить "лучший" элемент (и его индекс в массиве ) такой, что этот элемент строго меньше (а также меньше ) и значение динамики для него максимально: и
vector<int> LCIS(a: int[n], b: int[m])
  for i = 1 to n
    ind = 0 // позиция "лучшего" элемента в массиве b
    best = 0 // значение динамики для "лучшего" элемента
    for j = 1 to m	
      d[i][j] = d[i - 1][j] // НОВП на a[1..i - 1] и b[1..j] (без элемента a[i])
      if a[i] == b[j] and d[i - 1][j] < best + 1 // используем a[i]-й элемент для увеличения НОВП
        d[i][j] = best + 1                         
        prev[j] = ind                            
      if a[i] > b[j] and d[i - 1][j] > best // при следующем равенстве a[i] == b[j']
        best = d[i - 1][j] // в best будет храниться "лучший" элемент         
        ind = j // b[ind] < b[j'] и d[i-1][ind]  max 
  // восстановление (по массиву b)
  pos = 1 // ищем лучший элемент d[n][pos]  max 
  for j = 1 to m
    if d[n][pos] < d[n][j]
      pos = j
  // проходим по массиву b, выписывая элементы НОВП 
  answer: vector<int>
  while pos  0
    answer.pushBack(b[pos])
    pos = prev[pos]
  return answer
Доказательство оптимальности
В данной задаче используется принцип оптимальности на префиксе. Использование дополнительной переменной для подсчета всех случаев не влияет на корректность алгоритма — это всего лишь уловки реализации. Поэтому покажем, что для вычисления очередного значения мы используем оптимальность на подзадачах и обращаемся к уже посчитанным значениям. Напомним, как обозначается динамика: — это НОВП на префиксах и , где последним элементом НОВП является элемент , а может не быть равен (то есть элемент лежит где-то в префиксе ). Итак, для есть два варианта:
- , тогда не влияет на результат, и последний элемент НОВП лежит в .
- , тогда и — последние элементы НОВП префиксов и : — по определению динамики, а как элемент, который может стать последним, не ухудшая результат. Действительно, последовательность строго возрастает, поэтому если в префиксе есть элемент , то его можно заменить на элемент без уменьшения длины НОВП. Если же в такого элемента нет, то — единственный из возможных вариантов. Итак, и — последние элементы НОВП. Значит, начало НОВП () лежит в префиксах и (значения для которых уже посчитаны). Мы ищем элемент с лучшей динамикой , что удовлетворяет условию возрастания последовательности и автоматически гарантирует, что конец такой НОВП лежит в префиксе .
См. также
- Задача о наибольшей общей подпоследовательности
- Задача о наибольшей возрастающей подпоследовательности
