Быстрое преобразование Фурье — различия между версиями
(→Описание задачи) |
м (rollbackEdits.php mass rollback) |
||
(не показано 17 промежуточных версий 4 участников) | |||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Быстрое преобразование Фурье''' (англ. ''Fast Fourier Transform | + | '''Быстрое преобразование Фурье''' (англ. ''Fast Fourier Transform, FFT'') {{---}} метод, позволяющий вычислять [[Дискретное преобразование Фурье | дискретное преобразование Фурье]] за время <tex>O(n \log n)</tex>. |
}} | }} | ||
Строка 12: | Строка 12: | ||
Метод основывается на том, что степени одних комплексных корней единицы в степени <tex>n</tex> дают другие. | Метод основывается на том, что степени одних комплексных корней единицы в степени <tex>n</tex> дают другие. | ||
− | + | Cначала мы разделяем вектор коэффициентов на два вектора, рекурсивно вычисляем значение ДПФ для них, и объединяем их в одно ДПФ. | |
== Алгоритм построения БПФ == | == Алгоритм построения БПФ == | ||
− | Пусть имеется многочлен <tex>A(x)</tex> | + | Пусть имеется многочлен <tex>A(x)</tex> порядка <tex>n</tex>, где <tex>n > 1, n = 2^t</tex>. Если <tex>n</tex> не является степенью двойки, добавим недостающие члены и положим коэффициенты равными нулю. |
<center><tex> A(x) = a_0 x^0 + a_1 x^1 + \ldots + a_{n-1} x^{n-1} </tex></center> | <center><tex> A(x) = a_0 x^0 + a_1 x^1 + \ldots + a_{n-1} x^{n-1} </tex></center> | ||
Строка 33: | Строка 33: | ||
− | Мы разбили исходный многочлен на два многочлена, имеющих вдвое меньшую степень. Нам необходимо по вычисленным <tex>DFT(A_0)</tex> и <tex>DFT(A_1)</tex> за линейное время вычислить <tex>DFT(A)</tex>. Так как здесь используется идея | + | Мы разбили исходный многочлен на два многочлена, имеющих вдвое меньшую степень. Нам необходимо по вычисленным <tex>\mathrm{DFT}(A_0)</tex> и <tex>\mathrm{DFT}(A_1)</tex> за линейное время вычислить <tex>\mathrm{DFT}(A)</tex>. Так как здесь используется идея ''разделяй и властвуй'', то асимптотическая оценка будет <tex>O(n \log n)</tex>. |
− | Пусть <tex>DFT(A_0) = \{y_k^0\}^{\frac{n}{2}-1}_{k=0}</tex> и <tex>DFT(A_1) = \{y_k^1\}^{\frac{n}{2} - 1}_{k=0}</tex>. Найдем вектор значений <tex>DFT(A) = \{y_k\}^{n-1}_{k=0}</tex>. | + | Пусть <tex>\mathrm{DFT}(A_0) = \{y_k^0\}^{\frac{n}{2}-1}_{k=0}</tex> и <tex>\mathrm{DFT}(A_1) = \{y_k^1\}^{\frac{n}{2} - 1}_{k=0}</tex>. Найдем вектор значений <tex>\mathrm{DFT}(A) = \{y_k\}^{n-1}_{k=0}</tex>. |
* Из <tex>(1)</tex> получаем значения для первой половины коэффициентов: | * Из <tex>(1)</tex> получаем значения для первой половины коэффициентов: | ||
<center><tex>y_k = y_k^0 + \omega^k_n y_k^1, \ \ k = 0 \ldots \dfrac{n}{2} - 1 </tex></center> | <center><tex>y_k = y_k^0 + \omega^k_n y_k^1, \ \ k = 0 \ldots \dfrac{n}{2} - 1 </tex></center> | ||
Строка 132: | Строка 132: | ||
*[[Дискретное преобразование Фурье]] | *[[Дискретное преобразование Фурье]] | ||
− | == Источники == | + | == Источники информации == |
*[https://ru.wikipedia.org/wiki/%D0%91%D1%8B%D1%81%D1%82%D1%80%D0%BE%D0%B5_%D0%BF%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%A4%D1%83%D1%80%D1%8C%D0%B5 Википедия {{---}} Быстрое преобразование Фурье] | *[https://ru.wikipedia.org/wiki/%D0%91%D1%8B%D1%81%D1%82%D1%80%D0%BE%D0%B5_%D0%BF%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%A4%D1%83%D1%80%D1%8C%D0%B5 Википедия {{---}} Быстрое преобразование Фурье] | ||
*[http://e-maxx.ru/algo/fft_multiply MAXimal::algo::Быстрое преобразование Фурье за O (N log N)] | *[http://e-maxx.ru/algo/fft_multiply MAXimal::algo::Быстрое преобразование Фурье за O (N log N)] | ||
− | [[Категория: | + | [[Категория: Алгоритмы и структуры данных]] |
+ | [[Категория: Алгоритмы алгебры и теории чисел]] | ||
+ | [[Категория: Основные элементы теории чисел]] | ||
+ | [[Категория: Основные алгоритмы теории чисел]] |
Текущая версия на 19:06, 4 сентября 2022
Определение: |
Быстрое преобразование Фурье (англ. Fast Fourier Transform, FFT) — метод, позволяющий вычислять дискретное преобразование Фурье за время . |
Содержание
Описание задачи
Задача: |
Необходимо научиться вычислять прямое и обратное дискретное преобразование Фурье многочлена | степени за время .
Метод основывается на том, что степени одних комплексных корней единицы в степени дают другие.
Cначала мы разделяем вектор коэффициентов на два вектора, рекурсивно вычисляем значение ДПФ для них, и объединяем их в одно ДПФ.
Алгоритм построения БПФ
Пусть имеется многочлен
порядка , где . Если не является степенью двойки, добавим недостающие члены и положим коэффициенты равными нулю.Разделим
на два многочлена, где один будет с четными, а другой с нечетными коэффициентами:
Многочлен
получается из и следующим образом:
Мы разбили исходный многочлен на два многочлена, имеющих вдвое меньшую степень. Нам необходимо по вычисленным и за линейное время вычислить . Так как здесь используется идея разделяй и властвуй, то асимптотическая оценка будет .
Пусть
и . Найдем вектор значений .- Из получаем значения для первой половины коэффициентов:
- Для второй половины получаем:
Заметим, что
, тогда:Таким образом, мы получили:
Алгоритм построения обратного БПФ
Пусть вектор
— значения многочлена степени в точках . Необходимо, по данному вектору восстановить коэффициенты многочлена.Рассмотрим ДПФ в матричном виде:
Отсюда можно найти вектор
, умножив вектор на матрицу обратную матрице Вандермонда (матрица слева).Непосредственной проверкой можно убедиться, что обратная матрица имеет вид:
Получаем формулу для
:Аналогично прямому ДПФ, по принципу разделяй и властвуй посчитаем
.