Алгоритм поиска блокирующего потока в ациклической сети — различия между версиями
(→Удаляющий обход) |
м (rollbackEdits.php mass rollback) |
||
| (не показаны 3 промежуточные версии 2 участников) | |||
| Строка 70: | Строка 70: | ||
===Асимптотика=== | ===Асимптотика=== | ||
| − | Если информация о входящих и исходящих дугах будет храниться в виде связных списков, то для того, чтобы пропустить поток, на каждой итерации будет выполнено <tex>O(K + E_i)</tex> действий, где <tex>K</tex> соответствует числу рёбер, для которых остаточная пропускная способность уменьшилась, но осталась положительной, а <tex>E_i</tex> — числу удалённых рёбер. Таким образом, для поиска блокирующего потока будет выполнено <tex>\sum\limits_i{O(K+E_i)} = O(K^2)</tex> действий. | + | Если информация о входящих и исходящих дугах будет храниться в виде связных списков, то для того, чтобы пропустить поток, на каждой итерации будет выполнено <tex>O(K + E_i)</tex> действий, где <tex>K = O(V)</tex> соответствует числу рёбер, для которых остаточная пропускная способность уменьшилась, но осталась положительной, а <tex>E_i</tex> — числу удалённых рёбер. Таким образом, для поиска блокирующего потока будет выполнено <tex>\sum\limits_i{O(K+E_i)} = O(K^2)</tex> действий. |
== См. также == | == См. также == | ||
Текущая версия на 19:07, 4 сентября 2022
Содержание
Жадный алгоритм
Идея заключается в том, чтобы по одному находить пути из истока в сток , пока это возможно. Обход в глубину найдёт все пути из в , если из достижима , а пропускная способность каждого ребра поэтому, насыщая рёбра, мы хотя бы единожды достигнем стока , следовательно блокирующий поток всегда найдётся.
Используя , каждый путь находится за , где — число рёбер в графе. Поскольку каждый путь насыщает как минимум одно ребро, всего будет путей. Итого общая асимптотика составляет .
Удаляющий обход
Аналогично предыдущей идее, однако будем удалять в процессе обхода в глубину из графа все рёбра, вдоль которых не получится дойти до стока . Это очень легко реализовать: достаточно удалять ребро после того, как мы просмотрели его в обходе в глубину (кроме того случая, когда мы прошли вдоль ребра и нашли путь до стока). С точки зрения реализации, надо просто поддерживать в списке смежности каждой вершины указатель на первое не удалённое ребро, и увеличивать этот указатель в цикле внутри обхода в глубину. Корректность при этом сохраняется согласно предыдущему пункту.
int dfs(int , int flow) if (flow == 0) return 0 if ( == ) return flow for ( = ptr[] to n) if () pushed = dfs(, min(flow, c() - f())) f() += pushed f() -= pushed return pushed ptr[]++ return 0
main()
...
flow = 0
for (int i = 1 to n)
ptr[i] = 0
do
pushed = dfs(, )
flow += pushed
while (pushed > 0)
Если обход в глубину достигает стока, насыщается как минимум одно ребро, иначе как минимум один указатель продвигается вперед. Значит один запуск обхода в глубину работает за , где — число вершин в графе, а — число продвижения указателей. Ввиду того, что всего запусков обхода в глубину в рамках поиска одного блокирующего потока будет , где — число рёбер, насыщенных этим блокирующим потоком, то весь алгоритм поиска блокирующего потока отработает за , что, учитывая, что все указатели в сумме прошли расстояние , дает асимптотику . В худшем случае, когда блокирующий поток насыщает все рёбра, асимптотика получается .
Замечание: Если в алгоритме Диница искать блокирующий поток удаляющим обходом, то его эффективность составит , что уже лучше эффективности алгоритма Эдмондса-Карпа .
Алгоритм Малхотры — Кумара — Махешвари
Идея
Для каждой вершины вводится потенциал потока, равный максимальному дополнительному потоку, который может пройти через эту вершину. Далее запускаем цикл, на каждой итерации которого определяем вершину с минимальным потенциалом . Затем пускается поток величины из истока в сток, проходящий через эту вершину. При этом если остаточная пропускная способность ребра равна нулю, то это ребро удаляется. Также, удаляются все вершины, у которых не остаётся ни одного входящего и/или ни одного выходящего ребра. При удалении вершины все смежные рёбра удаляются.
Подробное описание
- Для каждой вершины вычислим входящий и исходящий потенциал: и . Пусть и . Определим потенциал или пропускную способность вершины в сети . Таким образом, потенциал вершины определяет максимально возможное количество потока, который может через неё проходить. Ясно, что через вершины с поток проходить не может. Следовательно, их можно удалить из вспомогательной сети. Удалим эти вершины и дуги, им инцидентные, обновив должным образом потенциалы вершин, смежных с удалёнными. Если в результате появятся новые вершины с , удалим рекурсивно и их. В результате во вспомогательной сети останутся только вершины с .
- После этого приступим к построению блокирующего потока. Пусть вершина принадлежит -ому слою и , где — -й слой. Протолкнем единиц потока из вершины в смежные с ней вершины по исходящим дугам с остаточной пропускной способностью . Попутно будем переносить проталкиваемый поток в исходную сеть, а также корректировать потенциалы вершин, отправляющих и принимающих избыток потока. В результате, весь (в виду минимальности потенциала вершины ) проталкиваемый поток соберется в вершинах -го слоя.
- Повторим процесс отправки потока из вершин -го слоя, содержащих избыток потока, в смежные им вершины -го слоя. И так до тех пор, пока весь поток не соберется в последнем слое, в котором содержится только сток , ибо все остальные вершины, ранее ему принадлежащие, были удалены, поскольку их потенциалы нулевые. Следовательно, весь поток величины , отправленный из вершины , где - минимальный полностью соберется в .
- На втором этапе вновь, начиная с вершины , осуществляется подвод потока уже по входящим дугам. В результате на первом шаге недостаток потока переадресуется к узлам -го слоя, затем -го. И так до тех пор, пока весь поток величины , отправленный в вершину , где - минимальный, не соберется в истоке . Таким образом, поток и во вспомогательной и в основной сети увеличится на величину .
MPM algorithm() { foreach ; Вычисляем остаточную сеть ; Найдём вспомогательный граф для ; while () { while ( достижима из в ) { найдём с минимальной пропускной способностью ; проталкиваем единиц потока из в ; проталкиваем единиц потока из в ; изменяем , и ; } вычисляем новый вспомогательный граф из ; } }
Асимптотика
Если информация о входящих и исходящих дугах будет храниться в виде связных списков, то для того, чтобы пропустить поток, на каждой итерации будет выполнено действий, где соответствует числу рёбер, для которых остаточная пропускная способность уменьшилась, но осталась положительной, а — числу удалённых рёбер. Таким образом, для поиска блокирующего потока будет выполнено действий.