Изменения

Перейти к: навигация, поиск

Гиперграфы

7614 байт добавлено, 19:07, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{Определение
|definition=
'''Гиперграфом ''' (англ. ''hypergraph'') <tex>H</tex> называют такую пару <tex>H = (X, E)</tex> , где <tex>X- </tex> - множество вершин, а <tex>E-</tex> - семейство подмножеств <tex>X</tex> , называемых '''гиперребрами''' (англ. ''hyperedges'')
}}
ГиперграфОбычные графы, у которого арность гиперребрер равна двум( т.е. каждое гиперребро содержит которых ребра могут соединять только две вершины), является графомявляются частным случаем гиперграфа, у которых все гиперребра содержат только две вершины. [[Файл:Hypergraph.jpg|thumb|450px|Рис.1: Гиперграф с множеством вершин <tex>V = \{ v_1, v_2, v_3, v_4, v_5, v_6, v_7 \}</tex> и гиперребрами <tex>E = \{ \{ v_1, v_2, v_3 \} , \{ v_2, v_3 \} , \{ v_3, v_5, v_6 \} , \{ v_4 \} \}</tex>]] 
[[Файл:Hypergraph.jpg]] рис.1
Частный случай гипергафа, где <tex>E=\{e_1, e_2, e_3, e_4\} = \{\{v_1, v_2, v_3\}, \{v_2,v_3\}, \{v_3,v_5.v_6\}, \{v_4\}\}</tex>
==Основные понятия гиперграфов==
{{Определение
|definition=
'''Путем''' (англ. ''path'') между двумя гиперребрами <tex>e_i</tex> и <tex>e_j</tex> гиперграфа <tex>H</tex> называется последовательность гиперребер <tex>e_{u_1}, e_{u_2} , \ldots ,e_{u_k}</tex>, таких что : 1) # <tex>e_{u_1} = e_i </tex> и <tex>e_{u_k} = e_j</tex> 2) # <tex>\forall v: 1 \leq leqslant v \leq leqslant k-1, e_v \cap e_{v+1} \ne \emptyset</tex>
}}
{{Определение
|definition=
Гиперграф <tex>H</tex> называется '''связным''' (англ. ''connected'') тогда и только тогда, когда существует путь между каждой парой гиперребер.
}}
[[Файл:Connected_hypergraph.jpg‎]]рис|thumb|450px|center|Рис.2 : Связный гиперграф]]
Пусть <tex>E- </tex> - связный, сокращенный набор гиперребер, <tex>e_1</tex> и <tex>e_2- </tex> - элементы <tex>E</tex> и <tex>q = e_1 \cap e_2</tex>.
{{Определение
|definition=
<tex>q</tex> называется '''сочленением''' (англ. ''articulation'') <tex>E</tex> , если при его удалении из всех гиперребер <tex>E</tex>, множество разрывается.
}}
==Матрица инцидентности ==
Пусть дан гиперграф <tex>H = (X, E)</tex> , где <tex> X = \{ x_1, x_2, \ldots , x_n \}</tex> и <tex> E = \{ e_1, e_2, \ldots , e_m \}</tex>. Любой гиперграф может задаваться матрицей инцидентности (смотри [[Матрица_инцидентности_графа|матрицу инцидентности в обычном графе)]] <tex>A = (a_{ij}) </tex> размером <tex> n \times m</tex>, где
<tex> a_{ij} = \left \{
\begin{array}{ll}
0, & x_i \in e_j \\ 1, & \mathrm{otherwise}
\end{array}
\right.
</tex>
Так например, для гиперграфа на рис.1 мы имеем такую можем построить матрицу инцидентностипо таблице отношения принодлежности вершины к гиперребру: {| class="wikitable" align="left" style="color: black; background-color:#ffffcc;" cellpadding="10"|+!!<tex>e_1</tex>!<tex>e_2</tex>!<tex>e_3</tex>!<tex>e_4</tex>|-align="center"!<tex>v_1</tex>|✓|||| |||-align="center"!<tex>v_2</tex>|✓||✓|| |||-align="center" !<tex>v_3</tex>|✓||✓||✓|| |-align="center" !<tex>v_4</tex>| |||| ||✓|-align="center" !<tex>v_5</tex>|||||✓|| |-align="center" !<tex>v_6</tex>|||||✓|| |-align="center" !<tex>v_7</tex>||||||||}
\end{pmatrix}</tex>
      ==Ацикличность гиперграфаЦикл в гиперграфе== {{Определение|definition='''Простым циклом''' длины <tex>s</tex> в гиперграфе <tex>H =(V, E)</tex> называется последовательность <tex>( A_0, v_0, A_1, \ldots , A_{s - 1}, v_{s - 1}, A_s)</tex> , где <tex>A_0 , \ldots , A_{s - 1} -</tex> различные ребра <tex>H</tex> , ребро <tex>A_s</tex> совпадает с <tex>A_0</tex> , а <tex>v_0, \ldots , v_{s - 1} -</tex> различные вершины <tex>H</tex> , причем <tex>v_i \in A_i \cap A_{i+1}</tex> для всех <tex> i =0, \ldots , s - 1</tex>. }} [[Файл:Cycle_hyper.jpg|thumb|450px|center|Рис. 3: Простейший случай цикла в гиперграфе]]  Универсальным способом задания гиперграфа является кенигово представление.
{{Определение
|definition=
Циклом в '''Кенигово представление''' гиперграфа <tex>H = (XV, E)-</tex> называется последовательность гиперребер обыкновенный двудольный граф '''<tex>K(e_{i_1}H)</tex>''' , e_{i_2}отражающий отношение инцидентности различных элементов гиперграфа, с множеством вершин <tex>V \ldots cup E </tex> и долями <tex>V, e_{i_k})E</tex> удовлетворяющим следующим свойствам:.}}
1) <tex>e_{i_k} = e_{i_1}</tex>Первым, кто дал определение ацикличности гипергафа является Клауд Берж:
2) <tex>\forall 2 \le j \le k - 2</tex> выполняется <tex>\forall e \in E : (S_{j-1} \cup S_j \cup S_{j+1}) \setminus e \ne \emptyset </tex>, где Теорема|statement=Гиперграф <tex>S_j = e_{i_j} \cap e_{i_{j+1}}H</tex> для которых выполняется не содержит циклов в том случае, если его кенигово представление <tex>\forall 1 \le j \le k - 1</tex>ацикличный граф, сожержит в противном случае.
}}
Для определения ацикличного Таким образом, если у нас есть цикл в графе кенигова представления, значит и сам гиперграф имеет цикл. [[Файл:Cycle_example.png|thumb|center|500px|Рис. 4: Пример гиперграфа введем определение , содержащего цикл]] ===Алгоритм нахождения цикла в гиперграфе=== Поскольку гиперграф может задаваться кениговым представлением, тогда произведём серию поисков в глубину в двудольном графе. Т.е. из каждой вершины, в которую мы ещё ни разу не приходили, запустим поиск в глубину, который при входе в вершину будет красить её в серый цвет, а при выходе - в чёрный. И если поиск в глубину пытается пойти в серую вершину, то это означает, что мы нашли цикл (если граф неориентированный, то случаи, когда поиск в глубину из какой-то вершины пытается пойти в предка, не считаются). ==Ацикличность гиперграфов== {{Определение|definition='''ухаРедукцией''' (англ. ''reduction'') гиперграфа<tex>H = (V, а также редукцию GYOE)</tex> называется такой гиперграф <tex>H' = (Graham-Yu-OzsoyogluV, E')</tex> , который получается из исходного путем удаления всех гиперребер, которые полностью содержатся в других гиперреберах.}}
{{Определение
|definition=
УхомГиперграф называется '''уменьшенным''' (по англ. ear''reduced'') гиперграфа называется такое гиперребро <tex>e</tex>, что его вершины можно разделить на две группы:если он эквивалентен своей редукции, то есть не имеет гиперребер внутри других гиперребер.}}
1Пусть <tex>M - </tex> множество вершин гиперграфа <tex>H = (V, E)</tex>. Множество '''частичных ребер''' (англ. ''partial edges'') Вершины, которые принадлежат только гиперребру порожденных множеством <tex>M</tex>, определяется как множество, полученное путем пересечения гиперребер из множества <tex>E</tex> с <tex>M</tex>. Таким образом, получаем множество : <tex> \{ e \cap M : e\in E \} - \{ \emptyset \} </tex> и никакому болееберем его редукцию.
2Множество частичных ребер, порожденное из гиперграфа <tex>H</tex> множеством <tex>M</tex>, называется '''вершинно-порожденным''' (англ. ''node-generated'') множеством частичных ребер. {{Определение|definition='''Блоком''' (англ. ''block'') Вершиныуменьшенного гиперграфа называется связное, которые принадлежат другим гиперребрамвершинно - порожденное множество частичных ребер без сочленения.
}}
{{Определение
|definition=
Множество частичных ребер называется '''тривиальным''' (англ. ''trivial''), если оно содержит одно гиперребро.}} {{Определение редукции GYO содержит |definition=Уменьшенный гиперграф называется '''<tex> \alpha </tex> - ацикличным''' (англ. ''<tex> \alpha </tex>-acyclity'') , если всего два шагаего блоки тривиальны, иначе называют '''<tex> \alpha </tex>-цикличным''' (англ. ''<tex> \alpha</tex>-cyclity'').}} ''Пример'' [[Файл:Alpha-acyclity-1.png|thumb|left|500px|Рис. 5: <tex> \alpha</tex>-ацикличный гиперграф]][[Файл:Alpha-acyclity-2.png|thumb|center|500px|Рис. 6: Подмножество гиперребер <tex> \{ ABC, CDE, EFA\} </tex>]]   
1) Устранение вершин, которые содержатся только в одном гиперребре.
2  Очень просто проверить что на рис. 3 представлен <tex> \alpha </tex>-ацикличный гиперграф. Он содержит четыре гиперребра <tex>- ABC, CDE, EFA, ACE</tex>. Сочленение для всего множества гиперребер является <tex> ABC \cap ACE = AC </tex> , так как после удаления вершин <tex>A</tex> и <tex>C</tex> гиперграф не будет связным (вершина <tex>B</tex> не будет ни с кем соединена) Удаление . Заметим, что на рис. 6 подмножетсво гиперребер <tex>\{ ABC, CDE, EFA \}</tex> не имеет сочленения. Однако, это множество не является вершинно - порожденным , таким образом, нет никаких противоречий с предположением, что гиперграф на рис. 5 является <tex> \alpha </tex>-ацикличным.  Заметим, что <tex> \alpha </tex>-ацикличность имеет одно нелогичное свойство: при добавлении гиперреберк <tex> \alpha </tex>-цикличному гиперграфу он может стать <tex> \alpha </tex>-ацикличным (например, при добавлении гиперребра, которое охватывает все вершины, всегда будет делать гиперграф <tex> \alpha </tex>-ацикличным). Из-за этого свойства было введено более строгое определение, называемое <tex> \beta </tex>-ацикличностью. {{Определение|definition=Гиперграф <tex>H = (V, E) </tex> является '''<tex> \beta </tex>-ацикличным''' (англ. ''<tex> \beta </tex>-acyclity'') , которые содержатся в другихесли все его подгиперграфы <tex> \alpha </tex>-ацикличны.
}}
То естьТак например гиперграф на рис. 5 является <tex> \alpha </tex>-ацикличным, мы удаляем вершины которые содержатся в ухено не является <tex> \beta </tex>-ацикличным, и ни в каком более гиперребретак как его подгиперграф на рис. Затем удаляем гиперребра, оставляя другие вершины6 является <tex> \alpha </tex>-цикличным.
{{Утверждение|statement=Если гиперграф сводится к пустому с помощью редукции GYO, тогда он ацикличный= См.также ==}}* [[Основные_определения_теории_графов|Основные определения теории графов]]
== Источники информации ==* [https://en.wikipedia.org/wiki/Claude_Berge wikipedia.com — Клауд Берж]* [Файлhttps:Acyclic_hyper//en.png]wikipedia.org/wiki/Hypergraph wikipedia.com — Гиперграфы]рис* [http://www.3 Ацикличный гиперграфsciencedirect.com/science/article/pii/S0012365X09003446?np=y sciencedirect.com — Ацикличность в гиперграфах]
С помощью редукции GYO удаляются вершины A, B [[Категория:Дискретная математика и C (т.к они содержатся только в одном своем гиперребре), а затем удаляем оставшиеся внутренние гиперребра.алгоритмы]][[Категория:Основные определения теории графов]]
1632
правки

Навигация