Изменения

Перейти к: навигация, поиск

Рёберное ядро

6961 байт добавлено, 19:07, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{Определение|
definition=
'''Рёберное ядро''' (англ. ''core'') <tex>C_1(G)</tex> графа <tex>G</tex> {{---}} это подграф [[Основные определения теории графов#finite graph|графа ]] <tex>G</tex>, порожденный объединением таких независимых множеств <tex>Y \subset E(G)</tex>, что <tex>|Y| = \alpha_{0}(G)</tex>, где <tex>\alpha_{0}(G)</tex> {{---}} число вершинного покрытия.
}}
 
{{Определение|
definition= Множество [[Основные определения теории графов#def_graph_edge_1|ребер]] (вершин) называется '''независимым''' (англ. ''independent''), если никакие его два элемента не смежны.}}{{Определение|id=def_3|definition='''Вершинным покрытием''' (англ. ''vertex cover'') графа <tex>G</tex> называется такое множество <tex>V</tex> его вершин, что у любого ребра в <tex>G</tex> хотя бы одна из вершин лежит в <tex>V</tex>.
}}
{{Определение|
definition=
'''числом Числом вершинного покрытия''' (англ. ''point-covering number'') называется число вершин в наименьшем вершинном покрытии графа <tex>G</tex>.
}}
==Критерий существования реберного ядра==
{{Определение|
definition=
Наименьшее вершинное покрытие <tex>M </tex> графа <tex>G </tex> с множеством вершим вершин <tex>V </tex> называется '''внешним'''(англ. ''external vertex cover''), если для любого подмножества <tex>M' \subseteq M</tex> выполняется неравнство неравенство <tex>|M'| \leqslant |U(M')|</tex>, где <tex>U(M') = \{v| \mid \:v \in V(G) \setminus M, \: vu \in E(G), \: u \in M'\}</tex>.
}}
{{Теорема|
statement=
для Для произвольного графа <tex>G</tex> следующие утверждения эквивалентны:(1) <tex>G</tex> имеет не пустое рёберное ядро. <br>
(2) <tex>G</tex> имеет внешнее наименьшее вершинное покрытие.
(3) каждое наименьшее вершинное покрытие для <tex>G</tex> является внешним.
|proof=
Обозначим минимальное вершинное покрытие <tex>G</tex> как <tex>M</tex>. Пусть <tex>U = V(G) \setminus M</tex>. <br>
Докажем <tex>(1) \Rightarrow (3)</tex>. Предположим, что в <tex>G</tex> существует наименьшее вершинное покрытие <tex>M</tex>, которое не является внешним.
Это значит что <tex>\exists M' : \: M' = \{u_1, \dots, u_r \}, </tex> где <tex>r \leqslant \alpha_0(G)</tex>,
такое что <tex>|M'| > |U(M')|.</tex> Пусть <tex>U(M') = \{u_1, \dots, u_t\}, \: t < r</tex>. Так же, пусть <tex>X</tex> {{---}} максимальное независимое множество ребер в <tex>G</tex>. Поскольку никакие две вершины <tex>U</tex> не смежны, каждое ребро из <tex>X</tex> соединено, по крайней мере, с одной вершиной из <tex>M</tex>. Если какое-нибудь ребро из <tex>X</tex> соединено более чем с одной ввершиной из <tex>M</tex>, то <tex>|X| < \alpha_0(G)</tex> и <tex>C_1(G) = \varnothing </tex>. Так что будем считать, что каждое ребро из <tex>X</tex> смежно ровно с одной вершиной из <tex>M</tex>. Из этого сдедует, что <tex>|X| \leqslant t - r + \alpha_0(g) < \alpha_0(G)</tex>. И снова <tex>C_1(G) = \varnothing</tex>.<br>
Следствие <tex>(3) \Rightarrow (2)</tex> {{---}} очевидно. <br>
Докажем <tex>(2) \Rightarrow (1)</tex>.
Пусть <tex>M = \{v_1, \dots, v_s\}</tex> {{---}} наименьшее внешнее вершинное покрытие. Пусть <tex>Y_i = \{u \mid u \in U, uv_i \in E(G) \}</tex>. Тогда для любого <tex>k: \:\: 1 \leqslant k \leqslant s</tex>, объединение любых <tex>k</tex> различных множеств <tex>Y_i</tex> содержит, по меньшей мере <tex>k</tex> вершин.
Следовательно, по [[Теорема Холла|теореме о свадьбах (Холла)]], существует множество <tex>s</tex> различных вершин <tex>\{y_1, \dots, y_s\}, \: y_j \in Y_j</tex>. Следовательно существует набор независимых ребер <tex>y_1v_1, \dots, y_sv_s</tex>. А значит <tex>C_1(G)</tex> не может быть пустым.
}}
[[Файл:EdgeCore.png|thumb|500px|рис. 1. a) граф <tex>H</tex>, б) реберное ядро графа <tex>H</tex> ]]
В качестве примера рассмотрим граф <tex>H </tex> изображенный на рис. 1 а). Этот граф имеет два наименьших вершинных покрытия: <tex>M_1 = \{B, E, F\}</tex> и <tex>M_2 = \{B, E, G\}</tex>.
Пусть <tex>M_1' = M_1</tex> то <tex>U(M_1') = \{A, C, D, G\}</tex>. Пусть <tex>M_1'' = \{E, F\}</tex>. Тогда <tex>U(M_1'') =\{C, D, G\}</tex>.
Отсюда <tex>|M_1'| \leqslant |U(M_1')|</tex> и <tex>|M_1''| \leqslant |U(M_1'')|</tex>. И это верно для любого подмножества <tex>M_1</tex>. Значит, <tex>M_1</tex> {{---}} внешнее покрытие. Значит и <tex>M_2</tex> {{---}} внешнее покрытие.
==Реберное ядро в двудольном графе==
Здесь и далее будем рассматривать [[Двудольные графы|двудольный граф ]] <tex>G</tex>, в котором обозначим <tex>S</tex> {{- --}} множество вершин левой доли, <tex>T</tex> {{--- }} множество вершин правой доли.
{{Определение |
definition= <tex>G</tex> {{---}} '''полунесводимый граф'''(англ. ''semi-irreducible graph''), если <tex>G</tex> имеет ровно одно вершинное покрытие <tex>M</tex>, такое что или <tex>M \cap S</tex> или <tex>M \cap T</tex> {{---}} пусто
}}
{{Определение|
definition=
<tex>G</tex> {{---}} '''несводимый''' граф(англ. ''irreducible graph''), если он имеет ровно два наименьших вершинных покрытия <tex>M_1</tex> и <tex>M_2</tex>, таких что либо <tex>M_1 \cap S \cup M_2 \cap T = \varnothing </tex>, либо <tex>M_2 \cap S \cup M_1 \cap T = \varnothing</tex>
}}
{{Определение|
definition=
<tex>G</tex> {{---}} '''сводимый граф''' (англ. ''reducible graph'') если он не является ни полунесводимым, ни сводимымнесводимым.}} {{Теорема|id=th2|statement=Если оба конца ребра <tex>w \in E(G)</tex> покрыто некоторым минимальным вершинным покрытием, то <tex>w \notin C_1(G)</tex>.|proof=Сошлемся на теорему 3 (Theorem 3)<ref>A. L. Dulmage and N. S. Mendelsohn, 1958, pp. 519.</ref> аналогичного результата для двудольных графов. То же самое доказательство можно перенести на произвольный граф.}}{{ Утверждение|about=Следствие 1|statement=Eсли <tex>G</tex> имеет минимальное вершинное покрытие, которое не является независимым, то <tex>G \neq C_1(G)</tex>.<br>}} {{ Утверждение|about=Следствие 2|id=proposal2|statement=Если <tex>G</tex> {{---}} сводимый связный двудольный граф, то <tex>G \neq C_1(G)</tex>.
}}
 
 
{{Теорема|
id=th3|
statement=
Если <tex>G</tex> имеет непустое реберное ядро, то <tex>C_1(G) \supset G</tex>, <tex>C_1(C_1(G)) = C_1(G)</tex>, а компоненты <tex>C_1(G)</tex> являются несводимыми или полунесводимыми двудольными подграфами <tex>G</tex>}} {{Теорема|id=th4|statement=<tex>G</tex> и его реберное ядро <tex>C_1(G)</tex> совпадают тогда и только тогда, когда <tex>G</tex> является двудольным и не является сводимым.
}}
 
=== Примеры ===
[[File:Bipartite_graph_1.png|thumb|130px|Двудольный граф <tex>G_1</tex>]]
[[File:Bipartite_graph_2.png|thumb|130px|Двудольный граф <tex>G_2</tex>]]
 
Рассмотрим двудольные графы <tex>G_1</tex> и <tex>G_2</tex>, изображенные на рисунках 1 и 2. В графе <tex>G_1</tex> пусть <tex>S_1 = \{v_3, v_6\}</tex> и <tex>T_1 = \{v_1, v_2, v_4, v_5, v_7 \}</tex>. Этот граф имеет единственное наименьшее вершинное покрытие <tex>M_1 = \{v_3, v_6\}</tex> и, поскольку <tex>M_1 \cap T_1 = \varnothing</tex>, он полунесводимый; следовательно, он совпадает со своим рёберным ядром. В графе <tex>G_2</tex> пусть <tex>S_2 = \{u_1, u_4, u_5\}</tex> и <tex>T_2 = \{u_2, u_3, u_6\}</tex>. В нём два наименьших вершинных покрытия, именно <tex>M_2 = \{u_1,u_4, u_5\}</tex> и <tex>N_2 = \{u_2, u_3, u_6\}</tex>. Так как <tex>M_2 \cap T_2 = \varnothing</tex> и <tex>N_2 \cap S_2 = \varnothing</tex>, то <tex>G_2</tex> {{---}} несводимый граф и, значит, совпадает со своим рёберным ядром.
<br>
 
== См. также ==
* [[NP-полнота задачи о независимом множестве]]
* [[Теория Рамсея]]
* [[Связь максимального паросочетания и минимального вершинного покрытия в двудольных графах]]
 
==Примечания==
<references />
 
== Источники информации ==
 
* [https://math.dartmouth.edu/archive/m38s12/public_html/sources/Hall1935.pdf P. Hall, On representatives of subsets, Journal of the London Mathematical Society 10 (1935) pp. 26-30.]
 
* [https://cms.math.ca/openaccess/cjm/v10/cjm1958v10.0517-0534.pdf A. L. Dulmage and N. S. Mendelsohn: Coverings of bipartite graphs, Canad J. Math., (1958), 517-534.]
 
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Основные определения теории графов]]
1632
правки

Навигация