|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| == Введение == | | == Введение == |
| Введем понятия двойственного, к пространству <tex>\mathbb{R}^2</tex>, пространства. Для того чтобы избежать рассмотрения отдельных случаев, работаем в однородных координатах. | | Введем понятия двойственного, к пространству <tex>\mathbb{R}^2</tex>, пространства. Для того чтобы избежать рассмотрения отдельных случаев, работаем в однородных координатах. |
Текущая версия на 19:11, 4 сентября 2022
Введение
Введем понятия двойственного, к пространству [math]\mathbb{R}^2[/math], пространства. Для того чтобы избежать рассмотрения отдельных случаев, работаем в однородных координатах.
Пока в конспекте есть недочеты.
Определение
Определение: |
Двойственным пространством называется пространство линейных функционалов на линейном пространстве [math]\mathbb{R}^2[/math]. |
Любой линейный функционал [math]f[/math] можно представить как [math]f((x, y)) := ax + b = cy[/math]. Это значит, каждому такому функционалу будет соответствовать точка в двойственном пространстве с однородными координатами [math](a, -b, c)[/math]. Таким образом, мы можем определить дуальное преобразование ([math]p \mapsto p^\star[/math])
для прямой, как точку в двойственном пространстве.
Утверждение: |
Дуальное преобразование от точки [math]p = (p_x, p_y, p_z)[/math] в исходном пространстве дает прямую [math]p^\star := (p_z y = p_x x - p_y)[/math] в двойственном. |
[math]\triangleright[/math] |
Расмотрим все прямые [math]l[/math], такие что [math]p \in l[/math]. Более формально, пусть [math]L = \{l : l = (a, b, c), \: cp_y = ap_x - b p_z\}[/math].
Для каждой можно выразить [math]b[/math]: [math]b p_z = ap_x - cp_y[/math], сделаем замену [math]\left[a := x, b := y\right][/math] и получим, что все точки [math]l^\star[/math]
из [math]L[/math] удовлетворяют уравнению прямой. |
[math]\triangleleft[/math] |
Теорема: |
Пусть [math]l[/math] - прямая, а [math]p[/math] - точка, тогда:
- [math]p \in l \Leftrightarrow l^\star \in p^\star[/math]
- [math]p[/math] лежит над [math]l[/math], тогда и только тогда когда [math]l^\star[/math] лежит над [math]p^\star[/math]
|
Доказательство: |
[math]\triangleright[/math] |
1. Пусть [math]p \in l[/math]. Возьмем две точки [math]p_1[/math] и [math]p_2[/math] такие, что [math]p_1, p_2 \in l[/math]. Тогда
[math]\text{rot}(p_1, p_2, p) = \begin{vmatrix}
p_{1x} & p_{1y} & p_{1z} \\
p_{2x} & p_{2y} & p_{2z} \\
p_x & p_y & p_z
\end{vmatrix} = 0[/math]. Воспользуемся леммой о предикате проверки расположения прямых. В двойственном пространстве точкам [math]p, p_1, p_2[/math] будут соответствовать прямые с соответствующими коэффициентами. Так как этот предикат равен нулю, все три прямые пройдут через одну точку - [math]l^\star[/math], в силу подстановки коэффициентов. Обратное следствие верно в силу того, что второе сопряженное пространство есть исходное.
2. Пусть [math]rot(p_1, p_2, p) \geqslant 0[/math] и [math] p_1 \geqslant p_2[/math]. Тогда, по лемме, [math]p^\star[/math] будет выше, чем [math]l^\star[/math]. Обратное аналогично. |
[math]\triangleleft[/math] |
Утверждение: |
Отрезок [math]pq[/math] переходит в такое множество: [math]P = \left\{t^\star = (x, y): \text{rot}(l^\star, p_1^\star, t^\star) \gt 0, \text{rot}(l^\star, q_1^\star, t^\star) \lt 0 \right\}[/math],
где [math]l[/math] - прямая на которой лежат [math]p[/math] и [math]q[/math], а [math]p_1^\star \in p^\star, q_1^\star \in q^\star, \text{rot}(l^\star, p_1^\star, q_1^\star) \gt 0[/math] - . |
[math]\triangleright[/math] |
Условие [math]\text{rot}(l, p_1, q_1) \gt 0[/math] означает, что прямая [math]q_1[/math] лежит выше точки пересечения [math]p_1[/math] и [math]l[/math]. Зафиксируем [math]p_1[/math] и [math]q_1[/math]. Рассмотрим прямую [math]t[/math], пересекающую [math]pq[/math]. Так как [math]t[/math] лежит выше точки пересечения [math]p_1[/math] и [math]l[/math], то
[math]\text{rot}(l, p_1, t) \gt 0[/math], Так как [math]t[/math] лежит ниже точки пересечения [math]q_1[/math] и [math]l[/math], то [math]\text{rot}(l, q_1, t) \lt 0[/math]. |
[math]\triangleleft[/math] |
Прикладной смысл двойственного пространства
Двойственной пространство позволяет нам посмотреть на некоторые задачи с другой точки зрения. Ниже приведен список задач:
- Построение пересечения полуплоскостей с помощью построения выпуклой оболочки в двойственном пространстве
- Set of points to Arrangements of Lines // TODO