Изменения

Перейти к: навигация, поиск

Кластеризация

25 583 байта добавлено, 19:11, 4 сентября 2022
м
rollbackEdits.php mass rollback
[[Файл:clusters.png|thumb|300px|Пример кластеризации]]
'''Кластеризация''' (англ. ''cluster analysis'') {{---}} задача группировки множества объектов на подмножества ('''кластеры''') таким образом,
чтобы объекты из одного кластера были более похожи друг на друга, чем на объекты из других кластеров по какому-либо критерию.
Задача кластеризации относится к классу задач обучения без учителя.
 
== Постановка задачи кластеризации ==
Пусть <tex>X</tex> {{---}} множество объектов, <tex>Y</tex> {{---}} множество идентификаторов (меток) кластеров.
Необходимо разбить выборку на подмножества (кластеры), то есть каждому объекту <tex>x_i \in X^m</tex> сопоставить метку <tex>y_i \in Y</tex>,
таким образом чтобы объекты внутри каждого кластера были близки относительно метрики <tex>\rho</tex>, а объекты из разных кластеров значительно различались.
 
{{Определение
|definition =
'''Алгоритм кластеризации''' — это функция <tex>a\colon X\to Y</tex>, которая любому объекту <tex>x\in X</tex> ставит в соответствие идентификатор кластера <tex>y\in Y</tex>.
}}
Множество <tex>Y</tex> в некоторых случаях известно заранее, однако чаще ставится задача
Решение задачи кластеризации объективно неоднозначно по ряду причин:
* не Не существует однозначного критерия качества кластеризации. Известен ряд алгоритмов, осуществляющих разумную кластеризацию "по построению", однако все они могут давать разные результаты. Следовательно, для определения качества кластеризации и оценки выделенных кластеров необходим эксперт предметной области.;* число Число кластеров, как правило, заранее не известно и выбирается по субъективным критериям. Даже если алгоритм не требует изначального знания о числе классов, конкретные реализации зачастую требуют ввести указать этот параметр<ref>[https://scikit-learn.org/stable/modules/clustering.html scikit-learn {{---}} Clustering]</ref>;* результат Результат кластеризации существенно зависит от метрики. Однако существует ряд рекомендаций по выбору метрик для определенных классов задач.<ref>Cornwell, B. (2015). Linkage Criteria for Agglomerative Hierarchical Clustering. Social Sequence Analysis, 270–274</ref>. Число кластеров фактически является гиперпараметром для алгоритмов кластеризации. Подробнее про другие гиперпараметры и их настройку можно прочитать в статье<ref>Shalamov Viacheslav, Valeria Efimova, Sergey Muravyov, and Andrey Filchenkov. "Reinforcement-based Method for Simultaneous Clustering Algorithm Selection and its Hyperparameters Optimization." Procedia Computer Science 136 (2018): 144-153.</ref>. == Теорема невозможности Клейнберга ==Для формализации алгоритмов кластеризации была использована аксиоматическая теория. Клейнберг постулировал три простых свойства в качестве аксиом кластеризации и доказал теорему, связывающую эти свойства.{{Определение|definition =Алгоритм кластеризации <tex>a</tex> является '''масштабно инвариантным''' (англ. ''scale-invariant''), если для любой функции расстояния <tex>\rho</tex> и любой константы <tex>\alpha > 0</tex> результаты кластеризации с использованием расстояний <tex>\rho</tex> и <tex>\alpha\cdot\rho</tex> совпадают.}} Первая аксиома интуитивно понятна. Она требует, чтобы функция кластеризации не зависела от системы счисления функции расстояния и была нечувствительна к линейному растяжению и сжатию метрического пространства обучающей выборки.{{Определение|definition ='''Полнота''' (англ. ''Richness''). Множество результатов кластеризации алгоритма <tex>a</tex> в зависимости от изменения функции расстояния <tex>\rho</tex> должно совпадать со множеством всех возможных разбиений множества объектов <tex>X</tex>.}} Вторая аксиома утверждает, что алгоритм кластеризации должен уметь кластеризовать обучающую выборку на любое фиксированное разбиение для какой-то функции расстояния <tex>\rho</tex>.{{Определение|definition =Функция расстояния <tex>{\rho}'</tex> является '''допустимым преобразованием''' функции расстояния <tex>\rho</tex>, если#<tex>{\rho}'(x_i, x_j) \leqslant \rho(x_i, x_j)</tex>, если <tex>x_i</tex> и <tex>x_j</tex> лежат в одном кластере;#<tex>{\rho}'(x_i, x_j) \geqslant \rho(x_i, x_j)</tex>, если <tex>x_i</tex> и <tex>x_j</tex> лежат в разных кластерах.}}{{Определение|definition =Алгоритм кластеризации является '''согласованным''' (англ. ''consistent''), если результат кластеризации не изменяется после допустимого преобразования функции расстояния.}} Третья аксиома требует сохранения кластеров при уменьшении внутрикластерного расстояния и увеличении межкластерного расстояния. {| class="wikitable"| style="text-align:center; font-weight:bold;" colspan=3|Примеры преобразований с сохранением кластеров|-| style="padding:5px;" |[[Файл:cluster_0.png|300px]]| style="padding:5px;" |[[Файл:clusters_scale_inv.png|300px]]| style="padding:5px;" |[[Файл:cluster_consist.png|300px]]|-| style="text-align:center;width:305px;" | Исходное расположение объектов и их кластеризация| style="text-align:center;width:305px;" | Пример масштабной инвариантности. Уменьшен масштаб по оси ординат в два раза.| style="text-align:center;width:305px;" | Пример допустимого преобразования. Каждый объект в два раза приближен к центроиду своего класса. Внутриклассовое расстояние уменьшилось, межклассовое увеличилось.|}  Исходя из этих аксиом Клейнберг сформулировал и доказал теорему:{{Теорема|author=Клейнберга|about=о невозможности|statement=Для множества объектов, состоящего из двух и более элементов, не существует алгоритма кластеризации, который был бы одновременно масштабно-инвариантным, согласованным и полным.}}Несмотря на эту теорему Клейнберг показал<ref>[https://www.cs.cornell.edu/home/kleinber/nips15.pdf Kleinberg J. An Impossibility Theorem for Clustering]</ref>, что иерархическая кластеризация по методу одиночной связи с различными критериями останова удовлетворяет любым двум из трех аксиом.
== Типология задач кластеризации ==
=== Типы входных данных ===
* Признаковое описание объектов. Каждый объект описывается набором своих характеристик, называемых признаками (англ. ''features''). Признаки могут быть как числовыми, так и нечисловыми.категориальными;
* Матрица расстояний между объектами. Каждый объект описывается расстоянием до всех объектов из обучающей выборки.
=== Цели кластеризации ===
* Классификация объектов. Попытка понять зависимости между объектами путем выявления их кластерной структуры. Разбиение выборки на группы схожих объектов упрощает дальнейшую обработку данных и принятие решений, позволяет применить к каждому кластеру свой метод анализа (стратегия «разделяй и властвуй»). В данном случае стремятся уменьшить число кластеров для выявления наиболее общих закономерностей.;* Сжатие данных. Можно сократить размер исходной выборки, взяв один или несколько наиболее типичных представителей каждого кластера. Здесь важно наиболее точно очертить границы каждого кластера, их количество не является важным критерием.;
* Обнаружение новизны (обнаружение шума). Выделение объектов, которые не подходят по критериям ни в один кластер. Обнаруженные объекты в дальнейшем обрабатывают отдельно.
=== Методы кластеризации ===
* Графовые алгоритмы кластеризации. Наиболее примитивный класс алгоритмов. В настоящее время практически не применяется на практике.;* Вероятностные алгоритмы кластеризации. Каждый объект из обучающей выборки относится к каждому из кластеров с определенной степенью вероятности:** [[EM-алгоритм]];* [[Иерархическая_кластеризация|Иерархические алгоритмы кластеризации]].Упорядочивание данных путем создания иерархии вложенных кластеров;** [[K-средних|Алгоритм <tex>\mathrm{k-}</tex>-средних ]]<sup>[на 28.01.19 не создан]</sup> (англ. ''<tex>\mathrm{k}</tex>-means''). Итеративный алгоритм, основанный на минимизации суммарного квадратичного отклонения точек кластеров от центров этих кластеров;* Распространение похожести (англ. ''affinity propagation''). Распространяет сообщения о похожести между парами объектов для выбора типичных представителей каждого кластера;* Сдвиг среднего значения (англ. ''mean shift''). Выбирает центроиды кластеров в областях с наибольшей плотностью;* Спектральная кластеризация (англ. ''spectral clustering''). Использует собственные значения матрицы расстояний для понижения размерности перед использованием других методов кластеризации;* Основанная на плотности пространственная кластеризация для приложений с шумами (англ. ''Density-based spatial clustering of applications with noise'', ''DBSCAN''). Алгоритм группирует в один кластер точки в области с высокой плотностью. Одиноко расположенные точки помечает как шум.  [[Файл:cluster_comparison.png|thumb|800px|center|<div style="text-align:center">Сравнение алгоритмов кластеризации из пакета scikit-learn<ref>[https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html scikit-learn {{---}} Comparing different clustering algorithms on toy datasets]</ref></div>]] == Меры качества кластеризации ==Для оценки качества кластеризации задачу можно переформулировать в терминах задачи дискретной оптимизации. Необходимо так сопоставить объектам из множества <tex>X</tex>meansметки кластеров, чтобы значение выбранного функционала качества приняло наилучшее значение. В качестве примера, стремятся достичь минимума среднего внутрикластерного расстояния <tex>F_0 = \dfrac{\sum_{i<j}{[y_i=y_j]\cdot\rho(x_i, x_j)}}{\sum_{i<j}[y_i=y_j]}</tex> или максимума среднего межкластерного расстояния <tex>F_1 = \dfrac{\sum_{i<j}{[y_i\neq y_j]\cdot\rho(x_i, x_j)}}{\sum_{i<j}[y_i\neq y_j]}</tex>. Подробнее про меры качества можно прочитать в статье [[Оценка_качества_в_задаче_кластеризации|оценка качества в задаче кластеризации]]. == Применение ===== Биология и биоинформатика ===*В области экологии кластеризация используется для выделения пространственных и временных сообществ организмов в однородных условиях;* EMКластерный анализ используется для группировки схожих геномных последовательностей в семейство генов, которые являются консервативными структурами для многих организмов и могут выполнять схожие функции;* Кластеризация помогает автоматически определять генотипы по различным частям хромосом;* Алгоритмы применяются для выделения небольшого числа групп генетических вариации человеческого генома.=== Медицина ===* Используется в позитронно-алгоритмэмиссионной томографии для автоматического выделения различных типов тканей на трехмерном изображении;* Иерархические алгоритмы кластеризацииПрименяется для выявления шаблонов устойчивости к антибиотикам; для классификации антибиотиков по типу антибактериальной активности. Упорядочивание === Маркетинг ===Кластеризация широко используется при изучении рынка для обработки данных , полученных из различных опросов.Может применяться для выделения типичных групп покупателей, разделения рынка для создания персонализированных предложений, разработки новых линий продукции.=== Интернет ===* Выделение групп людей на основе графа связей в социальных сетях;* Повышение релевантности ответов на поисковые запросы путем создания иерархии вложенных группировки веб-сайтов по смысловым значениям поискового запроса.=== Компьютерные науки ===* Кластеризация используется в сегментации изображений для определения границ и распознавания объектов;* Кластерный анализ применяется для определения образовавшихся популяционных ниш в ходе работы эволюционных алгоритмов для улучшения параметров эволюции;* Подбор рекомендаций для пользователя на основе предпочтений других пользователей в данном кластере;* Определение аномалий путем построения кластеров и выявления неклассифицированных объектов. == Псевдокод некоторых алгоритмов кластеризации ===== Метод K-средних (Алгоритм Ллойда) ===Основная идея заключается в том, что на каждой итерации перевычисляется центр масс для каждого кластера, полученного на предыдущем шаге, затем объекты снова разбиваются на кластеры в соответствии с тем, какой из новых центров оказался ближе по выбранной метрике. Алгоритм завершается, когда на какой-то итерации не происходит изменения внутрикластерного расстояния. Алгоритм минимизирует сумму квадратов внутрикластерных расстояний:<tex> \sum_{i = 1}^{m} ||x_i - \mu_{a_i}||^2 \: \to \: \min_{ \{a_i\}, \{\mu_a\}}, \: \: ||x_i - \mu_a||^2 = \sum_{j = 1}^{n} (f_j(x_i) - \mu_{a_j})^2</tex> На вход алгоритму подаётся выборка <tex>X^m = \{ x_1, \dots, x_m \}</tex> и количество кластеров <tex>K = |Y|</tex>. На выходе получаем центры кластеров <tex>\mu_a</tex> для кластеров <tex>a \in Y</tex>.  <tex>\mu_a := init(X^m)</tex> <font color="gray"># Инициализируем произвольно начальное приближение для центров кластеров <tex>a \in Y</tex></font>. (Можно наиболее удалённые друг от друга объекты выборки) <tex>A := [ -1 \: | \: for \: x_i \in X^m ]</tex> <font color="gray"># Инициализируем массив отображений из объектов выборки в их кластеры</font> <tex>changed := True</tex> <font color="blue"><tex>while</tex></font> <tex>changed</tex>: <font color="gray"># Повторяем пока <tex>A_i</tex> изменяются</font> <tex>changed := False</tex> <font color="blue"><tex>for</tex></font> <tex>x_i \in X^m</tex>: <font color="gray"># Относим каждый <tex>x_i</tex> к ближайшему центру</font> <tex>A_{i, old} := A_i</tex> <tex>A_i := arg \min_{a \in Y} ||x_i - \mu_a||</tex> <font color="blue"><tex>if</tex></font> <tex>A_i \neq A_{i, old}</tex>: <tex>changed := True</tex> <font color="blue"><tex>for</tex></font> <tex>a \in Y</tex>: <font color="gray"># Вычисляем новые положения центров</font> <tex>\mu_a := \frac{\sum_{i = 1}^{m}[A_i = a] x_i}{\sum_{i = 1}^{m}[A_i = a]}</tex> <font color="blue"><tex>return</tex></font> <tex>\mu_a, \: A</tex> <font color="gray"># Возвращаем центры кластеров и распределение по ним объектов выборки</font> === DBSCAN ===Основная идея метода заключается в том, что алгоритм разделит заданный набор точек в некотором пространстве на группы точек, которые лежат друг от друга на большом расстоянии. Объекты, которые лежат отдельно от скоплений с большой плотностью, будут помечены как шумовые. На вход алгоритму подаётся набор точек, параметры <tex>\epsilon</tex> (радиус окружности) и <tex>m</tex> (минимальное число точек в окрестности). Для выполнения кластеризации потребуется поделить точки на четыре вида: основные точки, прямо достижимые, достижимые и шумовые. * Точка является ''основной'', если в окружности с центром в этой точке и радиусом <tex>\epsilon</tex> находится как минимум <tex>m</tex> точек. * Точка <tex>a</tex> является ''прямо достижимой'' из основной точки <tex>b</tex>, если <tex>a</tex> находится на расстоянии, не большем <tex>{\epsilon}</tex> от точки <tex>b</tex>.* Точка <tex>a</tex> является ''достижимой'' из <tex>b</tex>, если существует путь <tex>p_1, \dots, p_n</tex> с <tex>p_1 = a</tex> и <tex>p_n = b</tex>, где каждая точка <tex>p_{i+1}</tex> прямо достижима из точки <tex>p_i</tex> .* Все остальные точки, которые не достижимы из основных точек, считаются ''шумовыми''. Основная точка вместе со всеми достижимыми из нее точками формирует ''кластер''. В кластер будут входить как основные, так и неосновные точки. Таким образом, каждый кластер содержит по меньшей мере одну основную точку. Алгоритм начинается с произвольной точки из набора, которая еще не просматривалась. Для точки ищется <tex>{\epsilon}</tex>-окрестность. Если она не содержит как минимум <tex>m</tex> точек, то помечается как шумовая, иначе образуется кластер <tex>K</tex>, который включает все точки из окрестности. Если точка из окрестности уже является частью другого кластера <tex>C_j</tex>, то все точки данного кластера добавляются в кластер <tex>K</tex>. Затем выбирается и обрабатывается новая, не посещённая ранее точка, что ведёт к обнаружению следующего кластера или шума. На выходе получаем разбиение на кластеры и шумовые объекты. Каждый из полученных кластеров <tex>C_j</tex> является непустым множеством точек и удовлетворяет двум условиям:* Любые две точки в кластере попарно связаны (то есть найдется такая точка в кластере, из которой достижимы обе этих точки).* Если точка достижима из какой-либо точки кластера, то она принадлежит кластеру. Рассмотрим код: Пусть для каждого <tex>x \in X^m</tex> имеем посчитанной его <tex>\epsilon</tex>-окрестность <tex>U_{\epsilon}(x) = \{x' \in X^m \: | \: \rho(x, x') \lt \epsilon\}</tex>.  <tex>U := X^m</tex> <font color="gray"># Непомеченные объекты</font> <tex>A := [ -1 \: | \: for \: x_i \in X^m ]</tex> <font color="gray"># Инициализируем массив отображений из объектов выборки в их кластеры</font> <tex>a := 0</tex> <font color="gray"># Количество кластеров</font> <font color="blue"><tex>while</tex></font> <tex>U \neq \varnothing</tex>: <font color="gray"># Пока в выборке есть непомеченные объекты</font> <tex>x := rand(U)</tex> <font color="gray"># Берём случайную непомеченную точку</font> <font color="blue"><tex>if</tex></font> <tex>|U_{\epsilon}(x) < m|</tex>: <tex>mark[x]</tex> <tex>:=</tex> "<tex>noise</tex>" <font color="gray"># Пометим <tex>x</tex> как, возможно, шумовой</font> <font color="blue"><tex>else</tex></font>: <tex>K := U_{\epsilon}(x)</tex> <tex>a := a + 1</tex> <font color="gray"># Создадим новый кластер K</font> <font color="blue"><tex>for</tex></font> <tex>x' \in K</tex>: <font color="blue"><tex>if</tex></font> <tex>x' \in U</tex> || <tex>mark[x']</tex> <tex>==</tex> "<tex>noise</tex>": <font color="gray"># Если <tex>x'</tex> не помечен или помечен как шумовой</font> <font color="blue"><tex>if</tex></font> <tex>|U_{\epsilon}(x')| \geq m</tex>: <tex>mark[x'] :=</tex> "<tex>interior</tex>" <font color="gray"># Пометим <tex>x'</tex> как внутренний кластера <tex>K</tex></font> <tex>K := K \cup U_{\epsilon}(x')</tex> <font color="gray"># Добавим вместе с <tex>x'</tex> всю его окрестность</font> <font color="blue"><tex>else</tex></font>: <tex>mark[x'] :=</tex> "<tex>frontier</tex>" <font color="gray"># Пометим <tex>x'</tex> как граничный кластера <tex>K</tex></font> <font color="blue"><tex>for</tex></font> <tex>x_i \in K</tex>: <tex>A_i := a</tex> <tex>U := U \setminus K</tex> <font color="blue"><tex>return</tex></font> <tex>a, \: A, \: mark</tex> <font color="gray"># Возвращаем количество кластеров, распределение по кластерам и метки объектов (внутренние, граничные или шумовые)</font> DBSCAN находит практическое применение во многих реальных задачах, например, в маркетинге: необходимо предложить покупателю релевантный товар, который подойдет под его заказ. Выбрать такой товар можно, если посмотреть на похожие заказы других покупателей {{---}} в таком случае похожие заказы образуют кластер вещей, которые часто берут вместе. Похожим образом с помощью DBSCAN можно исследовать и находить общие интересы людей, делить их на социальные группы, моделировать поведение посетителей сайта. Алгоритм также может использоваться для [[Сегментация изображений|сегментации изображений]]. == Пример кода ===== Пример на языке R ==={{Main|Примеры кода на R}}Для реализации алгоритма ''k-средних'' используется пакет <code>ClusterR</code>. В нем реализовано 2 функции: <code>KMeans_arma()</code> и <code>KMeans_rcpp()</code>. В примере далее рассмотрена реализация с использованием функции <code>KMeans_arma()</code> <font color="gray"># importing package and its' dependencies</font> library(ClusterR) <font color="gray"># reading data</font> data <- read.csv(<font color="green">"data.csv"</font>) <font color="gray"># evaluating model</font> model <- KMeans_arma(data, <font color="#660099">clusters</font> = <font color="blue">2</font>, <font color="#660099">n_iter</font> = <font color="blue">10</font>, <font color="#660099">seed_mode</font> = <font color="green">"random_subset"</font>, <font color="#660099">verbose</font> = T, <font color="#660099">CENTROIDS</font> = NULL) <font color="gray"># predicting results</font> predictions <- predict_KMeans(test_data, model)  == См. также ==* [[Оценка_качества_в_задаче_кластеризации|Оценка качества в задаче кластеризации]]* [[EM-алгоритм|EM-алгоритм]]* [[Иерархическая_кластеризация|Иерархическая кластеризация]]* [[k-средних|<tex>\mathrm{k}</tex>-средних]]<sup>[на 28.01.18 не создан]</sup>
== Примечания ==
<references/>
== Источники информации ==
* [https://en.wikipedia.org/wiki/Cluster_analysis Wikipedia {{---}} Cluster analysis]
* [http://www.machinelearning.ru/wiki/index.php?title=%D0%9A%D0%BB%D0%B0%D1%81%D1%82%D0%B5%D1%80%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F MachineLearning {{---}} Кластеризация]
* [httpshttp://ruwww.wikipediamachinelearning.orgru/wiki/%D0%98%D0%B5%D1%80%D0%B0%D1%80%D1%85%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BA%D0%BB%D0%B0%D1%81%D1%82%D0%B5%D1%80%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F Википедия {{images/c/ca/Voron-ML--}} Иерархическая кластеризацияClustering.pdf К.В.Воронцов Лекции по алгоритмам кластеризации и многомерного шкалирования]* [https://www.cs.cornell.edu/home/kleinber/nips15.pdf Kleinberg J. An Impossibility Theorem for Clustering]
[[Категория: Машинное обучение]]
[[Категория: Кластеризация]]
1632
правки

Навигация