Примеры неразрешимых задач: однозначность грамматики — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
Строка 1: | Строка 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Теорема | {{Теорема | ||
|statement= | |statement= |
Текущая версия на 19:12, 4 сентября 2022
Теорема: |
Не существует алгоритма, определяющего по произвольной грамматике, является ли она неоднозначной. |
Доказательство: |
Будем доказывать от противного. Для этого произведем m-сведение множества решений проблемы соответствий Поста к множеству решений нашей задачи. А так как множество решений ПСП неразрешимо, то из m-сведения будет следовать неразрешимость нашей задачи. Пусть — алфавит для экземпляра ПСП , . Рассмотрим грамматику , где и — множество символов, не встречающихся в алфавите . Символы можно воспринимать как номера правил, по которым мы будем выводить слова в нашей грамматике.Зададим грамматику следующими правилами:
Заметим, что любое слово , выводимое в этой грамматике, может быть представлено в виде или , причем, если неоднозначна, то слово можно вывести двумя способами, и тогда . Так как это одно и тоже слово, то все в этом слове равны. А каждое однозначно задает правило, по которому мы выводили слово.Поэтому, если бы мы умели решать сформулированную нами ПСП, то могли бы сказать, однозначна грамматика или нет. То есть, если ПСП имеет решение, то мы можем восстановить два вывода слова. Если ПСП не имеет решения, то грамматика однозначна, и не существует двух выводов одного и того же слова. Таким образом, мы получили m-сведение множества решений ПСП к множеству решений нашей задачи. А это значит, что задача об однозначности грамматики неразрешима. Получили, что не существует алгоритма, определяющего по произвольной грамматике, является ли она однозначной. |
См. также
- Контекстно-свободные грамматики
- Формальные грамматики
- Иерархия Хомского формальных грамматик
- Разрешимые языки
- m-сводимость
- Проблема соответствий Поста
Источники информации
- А. Маслов, Д. Стоцкий — Языки и автоматы. Издательство Мир, 1975, -361 с.
- Wikipedia — Ambiguous grammar