PS-полнота языка верных булевых формул с кванторами (TQBF) — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
Строка 1: | Строка 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Определение | {{Определение | ||
|definition=<tex>\mathrm{TQBF}</tex> расшифровывается как '''True Quantified Boolean Formula'''. Это язык верных булевых формул с кванторами.<br/> | |definition=<tex>\mathrm{TQBF}</tex> расшифровывается как '''True Quantified Boolean Formula'''. Это язык верных булевых формул с кванторами.<br/> |
Текущая версия на 19:13, 4 сентября 2022
Определение: |
. | расшифровывается как True Quantified Boolean Formula. Это язык верных булевых формул с кванторами.
Определение: |
— это пропозициональная формула с кванторами. Кванторы для каждой переменной записываются в начале выражения. |
Лемма (1): |
. |
Доказательство: |
Чтобы доказать это, просто приведём программу , решающую булеву формулу с кванторами на дополнительной памяти и работающую за конечное время.Эта программа требует if n == 0 return if return if return дополнительной памяти для хранения стека рекурсивных вызовов. Максимальная глубина стека — . |
Лемма (2): |
. |
Доказательство: |
Рассмотрим язык . Построим такую функцию , что и , где — полином.Так как , то существует детерминированная машина Тьюринга , распознающая его с использованием памяти полиномиального размера. Будем считать, что длина ленты машины есть , где — полином, а — длина входа.Пусть , — конфигурация . Конфигурация задаётся позицией и содержанием рабочей ленты. Введём обозначение — в конфигурации на -том месте стоит символ . Тогда размер конфигурации равен . Следовательно всего конфигураций .Под выражением будем понимать Аналогично выражение обозначаетРассмотрим функцию , проверяющую следующее условие: конфигурация достижима из конфигурации не более, чем за шагов.. . Общую длину получившейся формулы можно представить как . Заметим, что из-за умножения на 2 на каждом шаге рекурсии будет иметь экспоненциальный размер относительно . Нас это не устраивает, так как нам необходимо полиномиальное сведение. Поэтому воспользуемся квантором и перепишем её следующим образом:. Получившаяся формула верна, если существует такая промежуточная конфигурация , что для любых конфигураций и из того, что эти конфигурации нам интересны следует, что верно . А значит, конфигурация достижима из конфигурации не более, чем за шагов.За один шаг рекурсии длина максимального пути между конфигурациями уменьшается в два раза. Поэтому общую длину получившейся формулы можно представить как , где . Следовательно, размер полученной функции полиномиален относительно .Теперь мы можем записать функцию , которая будет переводить ДМТ и слово на ленте в формулу из .. Выражения и можно записать следующим образом:. .
Если , то существует путь из стартовой конфигурации в финишную, длины не более, чем , а значит формула верна.Если формула Таким образом, оказалась верна, то существует путь из стартовой конфигурации в финишную длины не более, чем . Значит, ДМТ допускает слово . Тогда . . |
Теорема: |
. |
Доказательство: |
Доказательство непосредственно следует из лемм. |