Изменения

Перейти к: навигация, поиск

Лемма Римана-Лебега

272 байта добавлено, 19:13, 4 сентября 2022
м
rollbackEdits.php mass rollback
На самом деле обе леммы равносильны.
# Первая получается из второй, если подставить <tex>f = 0</tex> вне отрезка <tex>Q</tex>.
# В обратную сторону: вне конечного отрезка функция стремится к нулютак как интеграл от модуля функции сходится, а на конечном то необходимо <tex> | \int\limits_{|x| > a} f(x) \cos(px) | \le \int\limits_{|x| > a} |f(x)| \xrightarrow[a \to \infty]{} 0 </tex>. На отрезке <tex> [-a; a] </tex> можно сжать интервал интегрирвания интегрирования в <tex> [-\pi; \pi] </tex>. {{TODO|t=тут ничего не понятно}}
}}
Пусть также в <tex>\delta</tex>-окрестности точки <tex>x</tex> выполняется <tex>f = g</tex>, тогда <tex>\lim\limits_{n \to \infty}(S_n(f,x)-S_n(g,x))=0</tex>
|proof=
Для удобства записи, в силу <tex>2\pi</tex>-периодичности, сдвинем точку <tex>x</tex> в ноль.
 
<tex> S_n(f, x) = \frac1{2\pi} \int\limits_{-\pi}^{\pi} f(x+t) \frac{\sin (n+\frac12)t}{\sin \frac{t}2}dt </tex>.
<tex> \frac1{2\pi} (\int\limits_{-\pi}^{-\delta} f(x+t) \frac1{\sin \frac{t}2} (\cos \frac{t}2 \sin nt + \sin \frac{t}2 \cos nt) dt = </tex>
<tex> = \frac1{2\pi} (\int\limits_{-\pi}^{-\delta} f(x +t) \mathrm{ctg } \frac{t}2 \sin t nt dt + \frac1{2\pi} \int\limits_{-\pi}^{-\delta} f(x + t) \cos nt dt )</tex>.
Так как функции <tex> f(x+t) \mathrm{ctg } \frac{t} 2 </tex> и <tex> f(x+t) </tex> суммируемы на <tex> (-\pi; -\delta) </tex>, то, по только что доказанной лемме, оба интеграла стремятся к нулю при <tex> n \to \infty </tex>. Аналогично поступаем с тремя остальными частями разности.
}}
1632
правки

Навигация