Подсчёт количества поглощающих состояний и построение матриц переходов марковской цепи — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
Строка 1: | Строка 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Подсчет количества поглощащих состояний== | ==Подсчет количества поглощащих состояний== | ||
Для хранения переходов марковской цепи создадим структуру <tex> \mathtt{jump}</tex>. | Для хранения переходов марковской цепи создадим структуру <tex> \mathtt{jump}</tex>. |
Текущая версия на 19:13, 4 сентября 2022
Содержание
Подсчет количества поглощащих состояний
Для хранения переходов марковской цепи создадим структуру
.Введем
, где — вероятность перехода из состояния в .Тогда, по определению поглощающего состояния, если
— поглощающее состояние, то . По этому признаку можно определить все поглощающие состояния в цепи.Псевдокод
- — массив состояний. Если — посглощающее состояние иначе
- — количество состояний
- — количество переходов
boolean[] findAbsorbings(transition: jump[m]): boolean absorbing[n] for jump i in transition absorbing[i.from] = i.from == i.to and i.prob == 1 return absorbing
Построение матриц переходов
Cоздадим сначала массив
где -ый элемент указывает под каким номером будет находиться -ое состояние среди существенных если оно существенное или несущественных в обратном случае, и заполним эти массивы.Псевдокод
- — массив нумерации состояний относительно существенной/несущественной матрицы.
- — матрица перехода мужду несущественными состояниями.
- — матрица из несущественных состояний в поглощающие.
float[][] buildTransitionMatrix(absorbing: boolean[n], transition: jump[m]): int count_q = 0 int count_r = 0 float Q[n][n] float R[n][n] int position[n] for i = 0 to n - 1 if absorbing[i] position[i] = count_r count_r++ else position[i] = count_q count_q++ for jump i in transition if absorbing[i.to] if !absorbing[i.from] R[position[i.from]][position[i.to]] = i.prob else Q[position[i.from]][position[i.to]] = i.prob return Q
См. также
- Марковская цепь
- Расчет вероятности поглощения в состоянии
- Математическое ожидание времени поглощения