Изменения

Перейти к: навигация, поиск

Эргодическая марковская цепь

5023 байта добавлено, 19:15, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{Определение
|definition=
'''Эргодическая''' [[Марковская цепь|марковская цепь]] (англ. ''ergodic Markov chain'') {{---}} марковская цепь, целиком состоящая из одного [[Марковская цепь#sort_def| эргодического класса]].
}}
==Стационарный режим==Эргодические марковские цепи могут быть описываются [[Регулярная марковская цепьОтношение связности, компоненты связности|регулярнымисильно связным графом]] или . Это означает, что в такой системе возможен переход из любого состояния <tex>S_i</tex> в любое состояние <tex>S_{j}, (i,j = 1,2,\ldots,n)</tex> за конечное число шагов. Для эргодических цепей при достаточно большом времени функционирования (<tex>t \to \infty</tex>) наступает '''циклическимистационарный режим'''. Циклические цепи отличаются , при котором вероятности <tex>\alpha_i</tex> состояний системы не зависят от времени и не зависят от регулярных темраспределения вероятностей в начальный момент времени, что в процессе переходов через определенное количество шагов (цикл) происходит возврат в какое-либо состояние. Регулярные цепи этим свойством не обладаютто есть: <tex>\alpha_i = const</tex>.
==Стационарный режимКлассификация эргодических цепей ==Эргодические марковские цепи описываются [[Отношение связности, компоненты связности|сильно связным графом]]. Это означает, что в такой системе возможен переход из любого состояния <tex>S_i</tex> в любое состояние <tex>S_{j}, (i,j = 1,2,...,n)</tex> за конечное число шагов.
Для эргодических цепей при достаточно большом времени функционирования {{Определение|definition=В эргодической цепи можно выделить '''циклические классы''' (англ. ''cyclic classes''). Количество циклических классов <tex>t \to \inftyd </tex>) наступает называют '''стационарный режимпериодом цепи'''(англ. ''period of Markov chain''), при котором вероятности <tex>\pi_i</tex> состояний системы не зависят от если цепь состоит целиком из одного циклического класса, её называют [[Регулярная марковская цепь|регулярной]]. С течением времени и не зависят от распределения вероятностей текущее состояние движется по циклическим классам в начальный момент времениопределенном порядке, т.е. причем каждые <tex>\pi_i = constd</tex>шагов она оказывается в одном и том же циклическом классе.}}
Для определения стационарных вероятностей <tex>\pi_i</tex> нахождения системы в состоянии <tex>S_{i}</tex> нужно составить систему <tex>n</tex> линейных однородных алгебраических уравнений с <tex>n</tex> неизвестными:Таким образом, эргодические цепи делятся на [[Регулярная марковская цепь|регулярные]] и '''циклические'''.
== Эргодическая теорема =={{Определение|definition='''Эргодическое (стационарное) распределение''' (англ. ''stationary distribution'') {{---}} распределение <tex>\pi_{i} alpha = (\sumalpha_1 \ldots \alpha_n )</tex>, такое что <tex>\alpha_i > 0</tex> и<tex>\lim\limits_{j=1n \to \infty} p_{ij}^{(n)}= \alpha_j</tex> (\pi_где <tex>p_{ij}^{j(n)} \times p_</tex> {{ji---}})вероятность оказаться в <tex>j</tex>-ом состоянии, где выйдя из <tex>i = 1,2,...</tex>-ого,через <tex>n</tex>переходов).}}
Можно заметить, что так как все свободные члены равны нулю, система имеет бесконечное число решений. Однако, у нас есть дополнительные условия на решение: <tex>\sum\limits_{j=1}^{n}\pi_{i} = 1</tex> и <tex> \pi_i \ge 0 </tex>. Следующая = Для регулярных цепей ===Доказательство теоремы для случая регулярных цепей приведено в конспекте про [[Регулярная марковская цепь#Эргодическая теорема утверждает единственность решения такой системыдля регулярных цепей | регулярные цепи]].
==Основная теорема об эргодических распределениях= Для циклических цепей ===
{{
Теорема
|about=Основная Эргодическая теорема об эргодических распределениях
|statement=
Для любой эргодической марковской цепи эргодическое распределение последовательность степеней <tex>P^{n}</tex> [http://en.wikipedia.org/wiki/Euler_summation суммируется по Эйлеру] к предельной матрице <tex>A</tex>, и эта предельная матрица имеет вид <tex>A = \mathbfxi\alpha</tex>, где <tex>\alpha</tex> {{---}} положительный вероятностный вектор, <tex>\pixi</tex> - вектор-столбец из единиц.|proof=  В случае циклической цепи переходы из одного циклического класса в другой возможны только при определенных значениях <tex> n </tex>, которые периодически повторяются. Таким образом, никакая степень матрицы переходов <tex>P</tex> не является положительной матрицей, и различные степени содержат нули на различных местах. С увеличением степени расположение этих нулей периодически повторяется. Следовательно, последовательность <tex>P^{n}</tex> не может сходиться в обычном смысле, для нее требуется так называемая суммируемость по Эйлеру. Рассмотрим матрицу <tex>(kI + (1 - k)P)</tex> при некотором <tex>k, ~ 0 < k < 1</tex>. Эта матрица является единственным решением системы''переходной матрицей''. Она имеет положительные элементы на всех тех же местах, что и <tex>P</tex>, следовательно, она также ''задает эргодическую цепь''. Также диагональные элементы этой матрицы положительны. Значит, в каждое состояние можно возвратиться за один шаг, а это значит, что <tex>d = 1</tex>. Таким образом, новая цепь является регулярной. Из [[Регулярная марковская цепь#Эргодическая теорема для регулярных цепей | эргодической теоремы для регулярных цепей]] следует, что <tex>(kI + (1 - k)P)^{n}</tex> стремится к матрице <tex>A = \xi\alpha</tex>, где <tex>\alpha</tex> {{---}} положительный вероятностный вектор. Таким образом: :<tex>A = \sumlim\limits_{i=0x\to \infty}(kI + (1 - k)P)^{\inftyn} \pi_i </tex>: <tex> A = 1,\; lim\pi_j limits_{x\ge 0,to \; \pi_j = infty} \sum\limits_{i=0}^{n} {n\inftychoose i} k^{n - i} (1 - k)^{i} \pi_i\, p_P^{iji}~~~~~ (1)</tex>Но последнее равенство в точности означает,\quad \, j\in \mathbbчто последовательность <tex>P^{Nn}</tex> суммируема по Эйлеру к <tex>A</tex>, причем суммируема при каждом значении <tex>k</tex>.
}}
==== Следствия ====
 
{{Теорема
|statement=Если <tex>P, A, \alpha</tex> {{---}} объекты из предыдущей теоремы. Тогда справедливы факты:
 
* Для любого вероятностного вектора <tex>\pi</tex> последовательность <tex>\pi P^{n}</tex> суммируема по Эйлеру к <tex>\alpha</tex>
* Вектор <tex>\alpha</tex> является единственным неподвижным вектором матрицы <tex>P</tex>
* <tex>PA = AP = A</tex>
|proof=
Домножим <tex>(1)</tex> на <tex>\pi</tex>. Таким образом, мы получим, что предел последовательности <tex>\pi P^{n}</tex> в смысле Эйлера равен <tex>\pi A = \pi \xi \alpha</tex>. Значит, '''первый факт''' доказан.
 
 
Так как вектор <tex>\alpha</tex> был получен из предельной матрицы для <tex>(kI + (1 - k)P)</tex>, являющейся регулярной переходной матрицей, то он будет её единственным неподвижным вероятностным вектором. Но матрица <tex>(kI + (1 - k)P)</tex> должна иметь те же неподвижные векторы, что и <tex>P</tex>, так как из соотношения
:<tex>\pi (kI + (1 - k)P) = \pi</tex>,
следует, что
:<tex>\pi (1 - k) P = \pi (1 - k)</tex>
и поскольку <tex>k \ne 1</tex>, то <tex>\pi P = \pi</tex>. Получается, что '''второй факт''' доказан.
 
 
'''Третий факт''' следует из того, что <tex>P \xi = \xi</tex> для любой переходной матрицы и что <tex>\alpha P = \alpha</tex>.
}}
==Пример==
[[File:TempErgo.gifjpg‎|thumb|250px|Пример эргодической циклической цепи]]Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская Самым простым примером циклической цепи является цепь будет иметь 2 состояния. Состояние меняется на противоположное, при бросании монетыиз двух состояний, с вероятностью переходной матрицей::<tex>p P = \begin{pmatrix}0.5& 1 \\ 1 & 0\end{pmatrix}</tex>.
Рассмотрим матрицу, следующего вида: <tex>p_{ij}=0.5, i,j=1,2</tex>. Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение Стационарным распределением этой цепи будет <tex>\pi alpha = (0.5,0.5)^{\top}</tex>, такое что <tex>\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, i=1,2</tex>.
==СсылкиСм. также==*[http://ru.wikipedia.org/wiki/Эргодическое_распределение Эргодическое распределение - Википедия[Марковская цепь]]*[[Регулярная марковская цепь]]*[[Примеры использования Марковских цепей]]
*[http://ru.wikipedia.org/wiki/Дискретное_распределение#.D0.94.D0.B8.D1.81.D0.BA.D1.80.D0.B5.D1.82.D0.BD.D1.8B.D0.B5_.D1.80.D0.B0.D1.81.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F Дискретное распределение - Википедия]== Источники информации ==
==Литература==*[http://ru.wikipedia.org/wiki/Эргодическое_распределение Википедия {{---}} Эргодическое распределение ]*[http://ru.wikipedia.org/wiki/Дискретное_распределение#.D0.94.D0.B8.D1.81.D0.BA.D1.80.D0.B5.D1.82.D0.BD.D1.8B.D0.B5_.D1.80.D0.B0.D1.81.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F Википедия {{---}} Дискретное распределение]*[http://en.wikipedia.org/wiki/Euler_summation Wikipedia {{---}} Euler summation]*Дж. Кемени, Дж. Снелл "{{---}} Конечные цепи Маркова" {{--- Издательство }} изд. "Наука", 1970 г . {{--- }} 129 c.
[[Категория:Дискретная математика и алгоритмы]]
[[Категория: Марковские цепи ]]
1632
правки

Навигация