Теорема о циклах — различия между версиями
Martoon (обсуждение | вклад) |
м (rollbackEdits.php mass rollback) |
||
(не показано 9 промежуточных версий 5 участников) | |||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Циклом''' (англ. | + | '''Циклом''' (англ. ''circuit'') в матроиде называется множество, не являющееся независимым, каждое подмножество которого является независимым. |
}} | }} | ||
Строка 17: | Строка 17: | ||
# От противного. Пусть <tex>D = (C_1 \cup C_2) \setminus p</tex> независимо. | # От противного. Пусть <tex>D = (C_1 \cup C_2) \setminus p</tex> независимо. | ||
#: Обозначим <tex>A = C_1 \cap C_2</tex>. Покажем, что <tex>|A| < |D|</tex>. Из предыдущего пункта очевидным образом следует, что <tex>|C_1 \setminus C_2| > 0</tex> и <tex>|C_2 \setminus C_1| > 0</tex>. | #: Обозначим <tex>A = C_1 \cap C_2</tex>. Покажем, что <tex>|A| < |D|</tex>. Из предыдущего пункта очевидным образом следует, что <tex>|C_1 \setminus C_2| > 0</tex> и <tex>|C_2 \setminus C_1| > 0</tex>. | ||
− | #: <tex>|D| = |C_1 \setminus C_2| + |C_2 \setminus C_1| + |A| - 1 \ | + | #: <tex>|D| = |C_1 \setminus C_2| + |C_2 \setminus C_1| + |A| - 1 \geqslant |A| + 1 + 1 - 1 = |A| + 1 > |A|.</tex> |
#: Отсюда путем многократного применения третьей аксиомы матроидов получим <tex>\exists B: A \subset B</tex> и <tex>|B| = |D|</tex>, причем <tex>B</tex> {{---}} независимо. | #: Отсюда путем многократного применения третьей аксиомы матроидов получим <tex>\exists B: A \subset B</tex> и <tex>|B| = |D|</tex>, причем <tex>B</tex> {{---}} независимо. | ||
− | #: Поскольку <tex>C_1</tex> {{---}} цикл, <tex>C_1 \nsubseteq B</tex>. Значит, найдется хотя бы один элемент в <tex>C_1 \setminus A</tex>, не лежащий в <tex>B</tex>. Следовательно в <tex>B</tex> лежит не более чем <tex>|C_1 \setminus A| - 1</tex> элементов из этого множества. Аналогично в <tex>B</tex> лежит не более чем <tex>|C_2 \setminus A| - 1</tex> элементов из множества <tex>C_2 \setminus A</tex>. | + | #: Поскольку <tex>C_1</tex> {{---}} цикл, <tex>C_1 \nsubseteq B</tex>. Значит, найдется хотя бы один элемент в <tex>C_1 \setminus A</tex>, не лежащий в <tex>B</tex>. Следовательно в <tex>B</tex> лежит не более чем <tex>|C_1 \setminus A| - 1</tex> элементов из этого множества. Аналогично в <tex>B</tex> лежит не более чем <tex>|C_2 \setminus A| - 1</tex> элементов из множества <tex>C_2 \setminus A</tex> . |
− | #: Получаем: <tex>|B| \ | + | #: Получаем: <tex>|B| \leqslant |A| + |C_1 \setminus A| - 1 + |C_2 \setminus A| - 1 = |C_1 \cup C_2| - 2 = |D| - 1</tex> . А поскольку <tex>|B| = |D|</tex> получаем противоречие. |
}} | }} | ||
+ | |||
+ | ==См. также== | ||
+ | * [[Определение матроида]] | ||
+ | * [[Примеры матроидов]] | ||
== Источники информации == | == Источники информации == | ||
* [[wikipedia:en:Matroid#Bases_and_circuits | Wikipedia {{---}} Matroid]] | * [[wikipedia:en:Matroid#Bases_and_circuits | Wikipedia {{---}} Matroid]] | ||
* [[wikipedia:ru:Матроид#Аксиоматическое определение | Википедия {{---}} Матроид]] | * [[wikipedia:ru:Матроид#Аксиоматическое определение | Википедия {{---}} Матроид]] | ||
+ | |||
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория:Матроиды]] | [[Категория:Матроиды]] | ||
+ | [[Категория:Основные факты теории матроидов]] |
Текущая версия на 19:15, 4 сентября 2022
Определение: |
Циклом (англ. circuit) в матроиде называется множество, не являющееся независимым, каждое подмножество которого является независимым. |
Теорема (о циклах): |
Пусть — матроид и — семейство его циклов. Тогда:
|
Доказательство: |
|