Изменения

Перейти к: навигация, поиск
м
rollbackEdits.php mass rollback
== Задача Алгоритм проверки наличия пути между двумя вершинами ==Дан [[Основные определения теории графов|неориентированный граф]] G и две вершины U и V. Необходимо проверить существует ли путь из вершины U в вершину V по рёбрам графа G.
{{Задача|definition =Дан граф <tex>G = (V, E)</tex> и две вершины <tex>s</tex> и <tex>t</tex>. Необходимо проверить, существует ли путь из вершины <tex>s</tex> в вершину <tex>t</tex> по рёбрам графа <tex>G</tex>.}}=== Алгоритм === Небольшая модификация алгоритма [[Обход в глубину, цвета вершин|обхода в глубину]]. Смысл алгоритма заключается в том, чтобы запустить обход в глубину из вершины U <tex>s</tex> и проверять при каждом посещении вершины, не является ли она искомой вершиной V<tex>t</tex>.Так как в первый момент времени все пути в графе "белые", то если вершина V <tex>t</tex> и была достижима из U<tex>s</tex>, то по [[Лемме Лемма о белых путях|Лемма лемме о белых путях]] в какой-то момент времени мы зайдём в вершину V<tex>t</tex>, чтобы её покрасить. Время работы алгоритма <tex>O(M |V| + N|E|)</tex>.
=== Реализация ===
  vector<boolfont color=green> // visited; {{---}} массив цветов вершин</font> <font color=green>/вектор для хранения информации о ''пройденных'' и ''не пройденных'' вершинах/ t {{---}} конечная вершина</font>
'''bool ''' dfs(u, t: '''int u''', visited: '''bool[]''') {: '''if(''' u == t) '''return ''' ''true; '' visited[u] = ''true; '' <font color=green>//помечаем вершину как пройденную</font> '''for (''' v таких, что (u, v) - ребро в G) : uv <tex>\in</tex> E <font color=green>//проходим по смежным с u вершинам</font> '''if (!''' '''not''' visited[v]) <font color=green>//проверяем, не находились ли мы ранее в выбранной вершине</font> '''if(''' dfs(v), t, visited) retrun '''return''' ''true;'' '''return ''' ''false;'' } == Алгоритм проверки связности графа G == int main() {{Задача |definition =Дан [[Основные определения теории графов|неориентированный граф]] <tex>G = (V, E)</tex>.Необходимо проверить, является ли он связным.}} === Алгоритм ===Снова небольшая модификация алгоритма [[Обход в глубину, цвета вершин|обхода в глубину]], в которой будем возвращать количество посещенных вершин. Запустим такой <code>dfs()</code> от некоторой вершины графа <tex>G</tex>, если его результат равен <tex>|V|</задание tex>, то мы побывали во всех вершинах графа G с количеством вершин n и вершин S и T, а следовательно он связен, иначе какие-то вершины остались непосещенными. Работает алгоритм за <tex>O(|V| + |E|)</tex>. === Реализация ===  <font color=green>// visited.assign{{---}} массив цветов вершин</font> '''int''' dfs(nu: '''int''', falsevisited: '''bool[]'''); : '''int''' visitedVertices = 1 visited[u] = ''true'' <font color=green>//помечаем вершину как пройденную</в начале все вершины в графе font> '''for'не пройденные''v: uv <tex>\in</tex> E <font color=green>// проходим по смежным с u вершинам</font> '''if(''' '''not''' visited[v] <font color=green>// проверяем, не находились ли мы ранее в выбранной вершине</font> visitedVertices += dfs(s)v, visited) std::out '''return''' visitedVertices ==Проверка связности вершин в режиме онлайн=={{Задача|definition =Дан пустой граф <tex>G</tex>, состоящий из <tex>n< "Путь /tex> вершин. Поступают запросы, каждый из S которых {{---}} это пара вершин, между которыми надо добавить ребро. Необходимо в T существует";любой момент времени для двух выбранных вершин отвечать на вопрос, являются ли они связанными.}}===Алгоритм=== else Описываемая здесь идея довольна проста и будет основываться на [[СНМ (наивные реализации)|системе непересекающихся множеств]]. std::out В каждом множестве будем хранить компоненты связности графа <tex>G< "Пути из S /tex>. Тогда ответ на запросы второго типа будет заключаться в определении множеств, в которых находятся данные вершины, т.е. две вершины являются связанными, если они лежат в одной компоненте связности. Изначально все вершины находятся в разных компонентах связности. При добавлении ребра объединяем множества, в T нет"; return 0; }которых находятся его концы, если те различны.
== Алгоритм проверки связности ВСЕГО графа G См. также ==Заведём счётчик количества *[[Обход в глубину, цвета вершин которые мы ещё не посетили. В стандартной процедуре dfs() будем уменьшать счётчик на единицу перед выходом из процедуры. Запустимся от какой-то вершины нашего графа. По окончании работы процедуры dfs() сравним счётчик с нулём. Если они равны, то мы побывали во всех вершинах графа, а следовательно он связен. Если счётчик отличен от нуля, то мы не побывали ]]*[[Использование обхода в какой-то вершине графа. Работает алгоритм за O(M + N).глубину для поиска цикла]]
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Обход в глубину]]
1632
правки

Навигация