Изменения

Перейти к: навигация, поиск

Независимые случайные величины

4236 байт добавлено, 19:17, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{В разработке}}== Определение Определения ==
{{Определение
|id=def1
|definition='''Независимые случайные Cлучайные величины''' - <tex> \xi</tex> и <tex>\eta</tex> называются '''независимыми''' (англ. ''independent''), если для <tex>\forall \alpha ,\beta \in \mathbb R</tex> события <tex>[ \xi \leqslant \alpha ]</tex> и <tex>[ \eta \leqslant \beta ]</tex> [[Независимые события|независимы]].<br> <tex>P((\xi \leqslant \alpha) \cap (\eta \leqslant \beta)) = P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)</tex>
}}
Иначе говоря, случайная величина <tex>\xi</tex> называется независимой от две случайные величины <tex>\eta</tex>называются независимыми, если вероятность получить при измерениях некоторое значение величины <tex>\xi</tex> не зависит от значения величины <tex>\eta</tex>по значению одной нельзя сделать выводы о значении другой.
== Замечание =Независимость в совокупности ==={{Определение|id=def2|definition=Случайные величины <tex>\xi_1, \ldots ,\xi_n</tex> называются '''независимы в совокупности''' (англ. ''mutually independent''), если события <tex>\xi_1 \leqslant \alpha_1, \ldots ,\xi_n \leqslant \alpha_n</tex> независимы в совокупности.}} == Примеры == ==== Карты ==== Пусть есть колода из <tex>36</tex> карт (<tex>4</tex> масти и <tex>9</tex> номиналов). Мы вытягиваем одну карту из случайным образом перемешанной колоды (вероятности вытягивания каждой отдельной карты равны). Определим следующие случайные величины: <tex>\xi</tex> {{---}} масть вытянутой карты : <tex>0</tex> {{---}} червы, <tex>1</tex> {{---}} пики, <tex>2</tex> {{---}} крести, <tex>3</tex> {{---}} бубны <tex>\eta</tex>: принимает значение <tex>0</tex> при вытягивании карт с номиналами <tex>6, 7, 8, 9, 10</tex> или <tex>1</tex> при вытягивании валета, дамы, короля или туза Для доказательства того, что <tex>\xi, \eta</tex> независимы, требуется рассмотреть все <tex>\alpha,\beta</tex> и проверить выполнение равенства:<tex>P((\xi \leqslant \alpha)\cap(\eta \leqslant \beta)) = P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)</tex> Для примера рассмотрим <tex>\alpha = 0, \beta = 0</tex>, остальные рассматриваются аналогично: <tex>P((\xi \leqslant 0)\cap(\eta \leqslant 0)) = </tex> <tex dpi = "160" > \dfrac{5}{36} </tex> <tex>P(\xi \leqslant 0) \cdot P(\eta \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{4} </tex> <tex> \cdot </tex> <tex dpi = "160" > \dfrac{5}{9} </tex> <tex> = </tex> <tex dpi = "160" > \dfrac{5}{36} </tex> ==== Тетраэдр ====Рассмотрим вероятностное пространство «тетраэдр». Каждое число соответствует грани тетраэдра (по аналогии с игральной костью): <tex>\Omega = \{0, 1, 2, 3\}</tex>. <tex>\xi (i) = i \bmod 2</tex>, <tex>\eta(i) = \left \lfloor \dfrac{i}{2} \right \rfloor</tex>. Рассмотрим случай: <tex>\alpha = 0</tex>, <tex>\beta = 1</tex>. <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>, <tex>P(\eta \leqslant 1) = 1</tex>, <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 1)) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>. Для этих значений <tex>\alpha</tex> и <tex>\beta</tex> события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы. Заметим, что если: <tex>\xi (i) = i \bmod 3</tex>, <tex>\eta(i) = \left \lfloor \dfrac{i}{3} \right \rfloor</tex>, то эти величины зависимы: положим <tex>\alpha = 0, \beta = 0</tex>. Тогда <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex> , <tex>P(\eta \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{3}{4} </tex> , <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 0)) = </tex> <tex dpi = "160" > \dfrac{1}{4} </tex> <tex> \neq P(\xi \leqslant 0) \cdot P(\eta \leqslant 0)</tex>. ==== Честная игральная кость ====Рассмотрим вероятностное пространство «честная игральная кость»: <tex>\Omega = \{1, 2, 3, 4, 5, 6\}</tex>, <tex>\xi (i) = i \bmod 2</tex>, <tex>\eta (i) = \dfrac{\mathcal {b} i}{3 \mathcal {c}}</tex>.Для того, чтобы показать, что величины <tex>\xi, \eta</tex> зависимы, надо найти такие <tex>\alpha, \beta</tex>, при которых<tex>P((\xi \leqslant \alpha)\cap(\eta \leqslant \beta)) \neq P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)</tex> При <tex>\alpha = 0, \beta = 1</tex>: <tex>P((\xi \leqslant 0)\cap(\eta \leqslant 1)) = </tex> <tex dpi = "160" > \dfrac{2}{6} </tex> <tex> = </tex> <tex dpi = "160" > \dfrac{1}{3} </tex>, <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>, <tex>P(\eta \leqslant 1) = </tex> <tex dpi = "160" > \dfrac{5}{6} </tex>
Стоит отметить, что если <tex>P((\xi</tex> и <tex>\leqslant 0)\cap(\eta</tex> - дискретные случайные величины, то достаточно рассматривать случай <tex>\leqslant 1)) \neq P(\xi = \alpha</tex>, <tex>leqslant 0) \cdot P(\eta = \betaleqslant 1)</tex>, откуда видно, что величины не являются независимыми.
== Пример См.также==*[[Вероятностное пространство, элементарный исход, событие]]*[[Дискретная случайная величина]]*[[Математическое ожидание случайной величины]]
=== Честная игральная кость =Источники информации ==Рассмотрим вероятностное пространство честная игральная кость <tex>\Omega = \mathcal {f} 1, 2, 3, 4, 5, 6 \mathcal {g}<*[http:/tex>. <tex>\xi</tex> и <tex>\eta</tex> - случайные величиныnsu. <tex>\xi (i) = i \% 2<ru/tex>, <tex>\eta (i) = [i \geqslant 3]<mmf/tex>. Для того, чтобы показать, что они независимы, надо рассмотреть все <tex>\alpha<tvims/tex> и <tex>\beta<chernova/tex>. Для примера рассмотрим <tex>\alpha = 0<tv/tex>, <tex>\beta = 0<lec/tex>node38. Тогда <tex>P( \xi \leqslant 0) = \frachtml НГУ {1}{2}</tex>, <tex>P( \eta \leqslant 0) = \frac{2---}{3}</tex>, <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 0)) = \frac{1}{3}</tex>. Эти события независимы, а значит случайные величины <tex>\xi</tex> и <tex>\eta</tex> независимы.Независимость случайных величин]
== Литература и источники информации ==*[http://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B7%D0%B0%D0%B2%D0%B8%D1%81%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D1%8C_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B2%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9)#.D0.9D.D0.B5.D0.B7.D0.B0.D0.B2.D0.B8.D1.81.D0.B8.D0.BC.D1.8B.D0.B5_.D1.81.D0.BB.D1.83.D1.87.D0.B0.D0.B9.D0.BD.D1.8B.D0.B5_.D0.B2.D0.B5.D0.BB.D0.B8.D1.87.D0.B8.D0.BD.D1.8B Википедия {{---}} Независимость (теория вероятностей)]
[http[Категория://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B7%D0%B0%D0%B2%D0%B8%D1%81%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D1%8C_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B2%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9)#.D0.9D.D0.B5.D0.B7.D0.B0.D0.B2.D0.B8.D1.81.D0.B8.D0.BC.D1.8B.D0.B5_.D1.81.D0.BB.D1.83.D1.87.D0.B0.D0.B9.D0.BD.D1.8B.D0.B5_.D0.B2.D0.B5.D0.BB.D0.B8.D1.87.D0.B8.D0.BD.D1.8B ВикипедияДискретная математика и алгоритмы]][[Категория: Теория вероятности]]
1632
правки

Навигация