Независимые случайные величины — различия между версиями
Mervap (обсуждение | вклад) м (Fix ticket) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 3 промежуточные версии 2 участников) | |||
Строка 33: | Строка 33: | ||
==== Тетраэдр ==== | ==== Тетраэдр ==== | ||
− | Рассмотрим вероятностное пространство «тетраэдр». Каждое число соответствует грани тетраэдра (по аналогии с игральной костью): <tex>\Omega = \{0, 1, 2, 3\}</tex>. <tex>\xi (i) = i \bmod 2</tex>, <tex>\eta(i) = \left \lfloor i | + | Рассмотрим вероятностное пространство «тетраэдр». Каждое число соответствует грани тетраэдра (по аналогии с игральной костью): <tex>\Omega = \{0, 1, 2, 3\}</tex>. <tex>\xi (i) = i \bmod 2</tex>, <tex>\eta(i) = \left \lfloor \dfrac{i}{2} \right \rfloor</tex>. |
Рассмотрим случай: <tex>\alpha = 0</tex>, <tex>\beta = 1</tex>. <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>, <tex>P(\eta \leqslant 1) = 1</tex>, <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 1)) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>. | Рассмотрим случай: <tex>\alpha = 0</tex>, <tex>\beta = 1</tex>. <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>, <tex>P(\eta \leqslant 1) = 1</tex>, <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 1)) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>. | ||
Строка 39: | Строка 39: | ||
Для этих значений <tex>\alpha</tex> и <tex>\beta</tex> события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы. | Для этих значений <tex>\alpha</tex> и <tex>\beta</tex> события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы. | ||
− | Заметим, что если: <tex>\xi (i) = i \bmod 3</tex>, <tex>\eta(i) = \left \lfloor i | + | Заметим, что если: <tex>\xi (i) = i \bmod 3</tex>, <tex>\eta(i) = \left \lfloor \dfrac{i}{3} \right \rfloor</tex>, то эти величины зависимы: положим <tex>\alpha = 0, \beta = 0</tex>. Тогда <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex> , <tex>P(\eta \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{3}{4} </tex> , <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 0)) = </tex> <tex dpi = "160" > \dfrac{1}{4} </tex> <tex> \neq P(\xi \leqslant 0) \cdot P(\eta \leqslant 0)</tex>. |
==== Честная игральная кость ==== | ==== Честная игральная кость ==== | ||
Строка 46: | Строка 46: | ||
<tex>P((\xi \leqslant \alpha)\cap(\eta \leqslant \beta)) \neq P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)</tex> | <tex>P((\xi \leqslant \alpha)\cap(\eta \leqslant \beta)) \neq P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)</tex> | ||
− | <tex> | + | При <tex>\alpha = 0, \beta = 1</tex>: |
<tex>P((\xi \leqslant 0)\cap(\eta \leqslant 1)) = </tex> <tex dpi = "160" > \dfrac{2}{6} </tex> <tex> = </tex> <tex dpi = "160" > \dfrac{1}{3} </tex>, <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>, <tex>P(\eta \leqslant 1) = </tex> <tex dpi = "160" > \dfrac{5}{6} </tex> | <tex>P((\xi \leqslant 0)\cap(\eta \leqslant 1)) = </tex> <tex dpi = "160" > \dfrac{2}{6} </tex> <tex> = </tex> <tex dpi = "160" > \dfrac{1}{3} </tex>, <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>, <tex>P(\eta \leqslant 1) = </tex> <tex dpi = "160" > \dfrac{5}{6} </tex> |
Текущая версия на 19:17, 4 сентября 2022
Содержание
Определения
Определение: |
Cлучайные величины независимы. | и называются независимыми (англ. independent), если события и
Иначе говоря, две случайные величины называются независимыми, если по значению одной нельзя сделать выводы о значении другой.
Независимость в совокупности
Определение: |
Случайные величины | называются независимы в совокупности (англ. mutually independent), если события независимы в совокупности.
Примеры
Карты
Пусть есть колода из
карт ( масти и номиналов). Мы вытягиваем одну карту из случайным образом перемешанной колоды (вероятности вытягивания каждой отдельной карты равны). Определим следующие случайные величины:— масть вытянутой карты : — червы, — пики, — крести, — бубны
: принимает значение при вытягивании карт с номиналами или при вытягивании валета, дамы, короля или туза
Для доказательства того, что
независимы, требуется рассмотреть все и проверить выполнение равенства:Для примера рассмотрим
, остальные рассматриваются аналогично:
Тетраэдр
Рассмотрим вероятностное пространство «тетраэдр». Каждое число соответствует грани тетраэдра (по аналогии с игральной костью):
. , .Рассмотрим случай:
, . , , .Для этих значений
и события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы.Заметим, что если:
, , то эти величины зависимы: положим . Тогда , , .Честная игральная кость
Рассмотрим вероятностное пространство «честная игральная кость»:
, , . Для того, чтобы показать, что величины зависимы, надо найти такие , при которыхПри
:, ,
, откуда видно, что величины не являются независимыми.
См.также
- Вероятностное пространство, элементарный исход, событие
- Дискретная случайная величина
- Математическое ожидание случайной величины