Порядок элемента группы — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
Строка 1: Строка 1:
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 
|+
 
|-align="center"
 
|'''НЕТ ВОЙНЕ'''
 
|-style="font-size: 16px;"
 
|
 
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 
 
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 
 
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 
 
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 
 
''Антивоенный комитет России''
 
|-style="font-size: 16px;"
 
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 
|-style="font-size: 16px;"
 
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 
|}
 
 
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=

Текущая версия на 19:18, 4 сентября 2022

Определение:
Порядком элемента [math]a[/math] группы [math]G[/math] называется наименьшее [math]n\in\mathbb{N}[/math], что [math]a^n = e[/math]. Если такого [math]n[/math] не существует, то говорят, что порядок [math]a[/math] бесконечен.


Примеры

  • Порядок любого ненулевого элемента в группе целых чисел по сложению равен бесконечности.
  • Порядок элемента [math]\overline{2}[/math] в группе вычетов по модулю [math]4[/math] конечен и равен двум, поскольку [math]2+2 \equiv 0 \pmod 4[/math].

Свойства

Утверждение:
В конечной группе у всех элементов конечный порядок.
[math]\triangleright[/math]
Действительно, необходимо при некоторых [math]n,m\in\mathbb{N},\, n\gt m[/math] совпадение степеней [math]a[/math] (иначе получится бесконечное число различных элементов в группе). Но тогда порядок [math]a[/math] не больше [math]n-m[/math]: [math]a^{n-m}=a^n\cdot a^{-m}=a^m\cdot a^{-m}=e[/math].
[math]\triangleleft[/math]
Определение:
[math]p[/math]-группа — группа, все элементы в которой имеют порядок, равный некоторой степени простого числа [math]p[/math]. Порядок разных элементов может быть разным.


Примеры

  • Группа вычетов по модулю простого числа относительно сложения: [math]\mathbb{Z}/{p\mathbb{Z}}[/math].
  • Циклическая группа порядка [math]p^e[/math].