Порядок элемента группы — различия между версиями
(Новая страница: «== Порядок элемента группы == '''Порядком''' элемента <math>a</math> группы <math>G</math> называется наим…») |
м (rollbackEdits.php mass rollback) |
||
(не показаны 24 промежуточные версии 3 участников) | |||
Строка 1: | Строка 1: | ||
− | = | + | {{Определение |
+ | |definition= | ||
+ | '''Порядком''' элемента <tex>a</tex> [[группа|группы]] <tex>G</tex> называется наименьшее <tex>n\in\mathbb{N}</tex>, что <tex>a^n = e</tex>. Если такого <tex>n</tex> не существует, то говорят, что порядок <tex>a</tex> бесконечен. | ||
+ | }} | ||
− | + | === Примеры === | |
+ | * Порядок любого ненулевого элемента в группе целых чисел по сложению равен бесконечности. | ||
+ | * Порядок элемента <tex>\overline{2}</tex> в группе вычетов по модулю <tex>4</tex> конечен и равен двум, поскольку <tex>2+2 \equiv 0 \pmod 4</tex>. | ||
− | == | + | === Свойства === |
+ | {{Утверждение | ||
+ | |statement=В [[конечная группа|конечной группе]] у всех элементов конечный порядок. | ||
+ | |proof= | ||
+ | Действительно, необходимо при некоторых <tex>n,m\in\mathbb{N},\, n>m</tex> совпадение степеней <tex>a</tex> (иначе получится бесконечное число различных элементов в группе). Но тогда порядок <tex>a</tex> не больше <tex>n-m</tex>: <tex>a^{n-m}=a^n\cdot a^{-m}=a^m\cdot a^{-m}=e</tex>. | ||
+ | }} | ||
+ | {{Определение | ||
+ | |definition= | ||
+ | <tex>p</tex>-группа — группа, все элементы в которой имеют порядок, равный некоторой степени простого числа <tex>p</tex>. Порядок разных элементов может быть разным. | ||
+ | }} | ||
− | + | === Примеры === | |
+ | * Группа вычетов по модулю простого числа относительно сложения: <tex>\mathbb{Z}/{p\mathbb{Z}}</tex>. | ||
+ | * [[Циклическая группа]] порядка <tex>p^e</tex>. | ||
− | + | [[Категория: Теория групп]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Текущая версия на 19:18, 4 сентября 2022
Определение: |
Порядком элемента группы называется наименьшее , что . Если такого не существует, то говорят, что порядок бесконечен. |
Примеры
- Порядок любого ненулевого элемента в группе целых чисел по сложению равен бесконечности.
- Порядок элемента в группе вычетов по модулю конечен и равен двум, поскольку .
Свойства
Утверждение: |
В конечной группе у всех элементов конечный порядок. |
Действительно, необходимо при некоторых | совпадение степеней (иначе получится бесконечное число различных элементов в группе). Но тогда порядок не больше : .
Определение: |
-группа — группа, все элементы в которой имеют порядок, равный некоторой степени простого числа . Порядок разных элементов может быть разным. |
Примеры
- Группа вычетов по модулю простого числа относительно сложения: .
- Циклическая группа порядка .