Теорема о рекурсии — различия между версиями
(→Теорема о рекурсии) |
м (rollbackEdits.php mass rollback) |
||
| (не показано 13 промежуточных версий 6 участников) | |||
| Строка 1: | Строка 1: | ||
==Теорема о рекурсии== | ==Теорема о рекурсии== | ||
| + | |||
Рассмотрим произвольную вычислимую функцию от двух аргументов — <tex>V(x, y)</tex>. Теорема о рекурсии утверждает, что всегда можно найти эквивалентную ей <tex>p(y) = V(p, y)</tex>, которая будет использовать саму себя для вычисления значения. Сформулируем теорему более формально. | Рассмотрим произвольную вычислимую функцию от двух аргументов — <tex>V(x, y)</tex>. Теорема о рекурсии утверждает, что всегда можно найти эквивалентную ей <tex>p(y) = V(p, y)</tex>, которая будет использовать саму себя для вычисления значения. Сформулируем теорему более формально. | ||
{{Теорема | {{Теорема | ||
| Строка 17: | Строка 18: | ||
... | ... | ||
| − | Тогда вызов <tex>\mathrm{p(x)}</tex> — вызов функции <tex>\ mathrm{main}</tex> от соответствующего аргумента. | + | Тогда вызов <tex>\mathrm{p(x)}</tex> — вызов функции <tex>\mathrm{main}</tex> от соответствующего аргумента. |
Все входные данные далее можно интерпретировать как строки, поэтому все типы аргументов и возвращаемых значений будут иметь тип '''string'''. Пусть есть вычислимая <tex>V(x,y)</tex>. Будем поэтапно строить функцию <tex>p(y)</tex>. <br> Предположим, что у нас в распоряжении есть функция <tex>\mathrm{getSrc()}</tex>, которая вернет код <tex>p(y)</tex>. Тогда саму <tex>p(y)</tex> можно переписать так: | Все входные данные далее можно интерпретировать как строки, поэтому все типы аргументов и возвращаемых значений будут иметь тип '''string'''. Пусть есть вычислимая <tex>V(x,y)</tex>. Будем поэтапно строить функцию <tex>p(y)</tex>. <br> Предположим, что у нас в распоряжении есть функция <tex>\mathrm{getSrc()}</tex>, которая вернет код <tex>p(y)</tex>. Тогда саму <tex>p(y)</tex> можно переписать так: | ||
| Строка 40: | Строка 41: | ||
'''string''' getSrc(): | '''string''' getSrc(): | ||
'''string''' src = getOtherSrc() | '''string''' src = getOtherSrc() | ||
| − | '''return''' ```$src <font color="green">// символ $ перед названием переменной | + | '''return''' ```$src <font color="green">// символ $ перед названием переменной используется для подстановки значения этой переменной в строку</font> |
<nowiki>|</nowiki>string getOtherSrc(): <font color="green">// многострочные строки заключаются в ``` и используют <nowiki>|</nowiki> в качестве разделителя</font> | <nowiki>|</nowiki>string getOtherSrc(): <font color="green">// многострочные строки заключаются в ``` и используют <nowiki>|</nowiki> в качестве разделителя</font> | ||
<nowiki>|</nowiki> return $src``` | <nowiki>|</nowiki> return $src``` | ||
| Строка 73: | Строка 74: | ||
<nowiki>|</nowiki> string src = getOtherSrc() | <nowiki>|</nowiki> string src = getOtherSrc() | ||
<nowiki>|</nowiki> return \```$src | <nowiki>|</nowiki> return \```$src | ||
| − | + | <nowiki>|</nowiki> <nowiki>|</nowiki>string getOtherSrc(): | |
| − | + | <nowiki>|</nowiki> <nowiki>|</nowiki> return \$src\``` | |
</code> | </code> | ||
}} | }} | ||
| Строка 80: | Строка 81: | ||
Иначе говоря, если рассмотреть <tex>V(x, y)</tex>, как программу, использующую <tex>x</tex> в качестве исходного кода и выполняющую действие над <tex>y</tex>, то теорема о рекурсии показывает, что мы можем написать эквивалентную ей программу <tex>p(y) = V(p, y)</tex>, которая будет использовать собственный исходный код. | Иначе говоря, если рассмотреть <tex>V(x, y)</tex>, как программу, использующую <tex>x</tex> в качестве исходного кода и выполняющую действие над <tex>y</tex>, то теорема о рекурсии показывает, что мы можем написать эквивалентную ей программу <tex>p(y) = V(p, y)</tex>, которая будет использовать собственный исходный код. | ||
| − | Приведем так же | + | Приведем так же альтернативную формулировку теоремы и альтернативное (неконструктивное) доказательство. |
==Теорема о неподвижной точке== | ==Теорема о неподвижной точке== | ||
| Строка 114: | Строка 115: | ||
По [[Теорема о рекурсии | теореме о рекурсии]], программа может знать свой исходный код. Значит, в неё можно написать функцию <tex> \mathrm{getSrc()} </tex>, которая вернёт строку {{---}} исходный код программы. | По [[Теорема о рекурсии | теореме о рекурсии]], программа может знать свой исходный код. Значит, в неё можно написать функцию <tex> \mathrm{getSrc()} </tex>, которая вернёт строку {{---}} исходный код программы. | ||
Напишем такую программу: | Напишем такую программу: | ||
| − | + | ||
<tex>p(q){:}</tex> | <tex>p(q){:}</tex> | ||
| − | '''if''' <tex>p. \mathrm{getSrc()}</tex> == <tex>q. \mathrm{getSrc()}</tex> | + | '''if''' <tex>p.\mathrm{getSrc()}</tex> == <tex>q.\mathrm{getSrc()}</tex> |
'''return''' 1 | '''return''' 1 | ||
'''else''' | '''else''' | ||
'''while''' ''true'' | '''while''' ''true'' | ||
| − | + | ||
Программа <tex> p </tex> знает свой код, что то же самое, что и знает свой номер. Как видно из её кода, она допускает только одно число {{---}} свой номер. | Программа <tex> p </tex> знает свой код, что то же самое, что и знает свой номер. Как видно из её кода, она допускает только одно число {{---}} свой номер. | ||
}} | }} | ||
| − | ==Пример использования теоремы о рекурсии в доказательстве | + | ==Пример использования теоремы о рекурсии в доказательстве неразрешимости языка== |
Используя теорему о рекурсии, приведём простое доказательство неразрешимости языка <tex>L=\{p \mid p(\varepsilon)=\perp\}</tex>. | Используя теорему о рекурсии, приведём простое доказательство неразрешимости языка <tex>L=\{p \mid p(\varepsilon)=\perp\}</tex>. | ||
{{Лемма | {{Лемма | ||
| Строка 130: | Строка 131: | ||
|statement= Язык <tex>L=\{p \mid p(\varepsilon)=\perp\}</tex> неразрешим. | |statement= Язык <tex>L=\{p \mid p(\varepsilon)=\perp\}</tex> неразрешим. | ||
|proof= | |proof= | ||
| − | Предположим обратное | + | Предположим обратное. Тогда существует программа <tex>r</tex>, разрешающая <tex>L</tex>. |
| − | Рассмотрим | + | Рассмотрим следующую программу: |
| − | + | ||
| − | + | p(x): | |
| − | + | '''if''' r(getSrc()) | |
| − | + | '''return''' 1 | |
| − | + | '''while''' ''true'' | |
| − | + | ||
| − | Пусть <tex>p(\ | + | Пусть <tex>p(\varepsilon)=\perp</tex>. Тогда условие <tex>r(p)</tex> выполняется и <tex>p(\varepsilon)=1</tex>. Противоречие. Если <tex>p(\varepsilon) \ne \perp</tex>, то <tex>r(p)</tex> не выполняется и <tex>p(\varepsilon)=\perp</tex>. Противоречие. |
}} | }} | ||
Текущая версия на 19:18, 4 сентября 2022
Содержание
Теорема о рекурсии
Рассмотрим произвольную вычислимую функцию от двух аргументов — . Теорема о рекурсии утверждает, что всегда можно найти эквивалентную ей , которая будет использовать саму себя для вычисления значения. Сформулируем теорему более формально.
| Теорема (Клини, о рекурсии / Kleene's recursion theorem): |
Пусть — вычислимая функция. Тогда найдётся такая вычислимая , что . |
| Доказательство: |
|
Приведем конструктивное доказательство теоремы. Введем новые обозначения для псевдокода. Внутри блока program располагаются функции, среди которых есть функция : program int p(int x):
...
int main():
...
...
Тогда вызов — вызов функции от соответствующего аргумента. Все входные данные далее можно интерпретировать как строки, поэтому все типы аргументов и возвращаемых значений будут иметь тип string. Пусть есть вычислимая . Будем поэтапно строить функцию . program string p(string y):
string V(string x, string y):
...
string main():
return V(getSrc(), y)
string getSrc():
...
Теперь нужно определить функцию . Предположим, что внутри мы можем определить функцию , состоящую из одного оператора , которая вернет весь предшествующий ей код. Тогда перепишется так. program string p(string y):
string V(string x, string y):
...
string main():
return V(getSrc(), y)
string getSrc():
string src = getOtherSrc()
return ```$src // символ $ перед названием переменной используется для подстановки значения этой переменной в строку
|string getOtherSrc(): // многострочные строки заключаются в ``` и используют | в качестве разделителя
| return $src```
string getOtherSrc():
...
Теперь определяется очевидным образом, и мы получаем итоговую версию функции :
program string p(string y):
string V(string x, string y):
...
string main():
return V(getSrc(), y)
string getSrc():
string src = getOtherSrc()
return ```$src
|string getOtherSrc():
| return $src```
string getOtherSrc():
return ```function p(int y):
| int V(string x, int y):
| ...
|
| int main():
| return V(getSrc(), y)
|
| string getSrc():
| string src = getOtherSrc()
| return \```$src
| |string getOtherSrc():
| | return \$src\```
|
Иначе говоря, если рассмотреть , как программу, использующую в качестве исходного кода и выполняющую действие над , то теорема о рекурсии показывает, что мы можем написать эквивалентную ей программу , которая будет использовать собственный исходный код.
Приведем так же альтернативную формулировку теоремы и альтернативное (неконструктивное) доказательство.
Теорема о неподвижной точке
Введем на множестве натуральных чисел следующее отношение: и докажем вспомогательную лемму.
| Определение: |
| Функция называется — продолжением ( — continuation) функции , если для всех таких , что определено, . |
| Лемма: |
Для всякой вычислимой функции существует вычислимая и всюду определенная функция , являющаяся ее — продолжением. |
| Доказательство: |
|
Рассмотрим вычислимую функцию от двух аргументов . Так как — вычислимая, то существует вычислимая и всюду определенная функция такая, что: . Покажем, что будет являться — продолжением функции . Если определено, то вернет другой номер той же вычислимой функции. Если же не определено, то вернет номер нигде не определенной функции. Таким образом, мы нашли — продолжение для произвольно взятой вычислимой функции . |
| Теорема (Роджерс, о неподвижной точке / Rogers' fixed-point theorem): |
Пусть — универсальная функция для класса вычислимых функций одного аргумента, — всюду определённая вычислимая функция одного аргумента. Тогда найдется такое , что , то есть и — номера одной функции. |
| Доказательство: |
|
Будем доказывать теорему от противного: предположим, что существует всюду определенная вычислимая функция , такая, что для любого . В терминах введенного нами отношения, это значит, что не имеет — неподвижных точек. Рассмотрим некоторую вычислимую функцию, от которой никакая вычислимая функция не может отличаться всюду. Такой будет, например (действительно, если предположить, что существует вычислимая функция , всюду отличная от , то нарушается определение универсальной функции.) Согласно доказанной нами лемме, существует вычислимая и всюду определенная функция , являющаяся — продолжением функции . Давайте зададим функцию следующим образом: , где — искомая всюду определенная, вычислимая функция, не имеющая — неподвижных точек. Тогда всюду отличается от (в силу того, что не имеет неподвижных точек.) Получили противоречие, из чего следует, что такой функции не существует. |
| Утверждение: |
, где — множество слов, допускаемых программой с номером . |
|
По теореме о рекурсии, программа может знать свой исходный код. Значит, в неё можно написать функцию , которая вернёт строку — исходный код программы. Напишем такую программу: if == return 1 else while trueПрограмма знает свой код, что то же самое, что и знает свой номер. Как видно из её кода, она допускает только одно число — свой номер. |
Пример использования теоремы о рекурсии в доказательстве неразрешимости языка
Используя теорему о рекурсии, приведём простое доказательство неразрешимости языка .
| Лемма: |
Язык неразрешим. |
| Доказательство: |
|
Предположим обратное. Тогда существует программа , разрешающая . Рассмотрим следующую программу: p(x):
if r(getSrc())
return 1
while true
Пусть . Тогда условие выполняется и . Противоречие. Если , то не выполняется и . Противоречие. |
См. также
Источники информации
- Wikipedia — Kleene's recursion theorem
- Верещагин Н. К., Шень А. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции — М.: МЦНМО, 1999 - С. 176
- Kleene, Stephen On notation for ordinal numbers - The Journal of Symbolic Logic, 1938 - С. 150-155