Изменения

Перейти к: навигация, поиск

Список заданий по ТФЯ

5954 байта добавлено, 19:19, 4 сентября 2022
м
rollbackEdits.php mass rollback
# Рассмотрим отношение на словах $L$: $x \equiv y$, если для любых $u$, $v$ выполнено $uxv \in L \Leftrightarrow uyv \in L$. Классы эквивалентности этого отношения называются синтаксическим моноидом языка $L$. Докажите, что $L$ регулярный тогда и только тогда, когда синтаксический моноид $L$ конечен.
# Придумайте семейство регулярных языков $L_i$, у которых ДКА для $L_i$ содержит $O(i)$ состояний, а синтаксический моноид $L_i$ имеет неполиномиальный размер.
# Постройте КС-грамматику для языка $0^n1^n$.
# Постройте КС-грамматику для языка палиндромов над алфавитом $\{0, 1\}$.
# Постройте КС-грамматику для языка слов над алфавитом $\{0, 1\}$, в которых число нулей равно числу единиц. Докажите, что ваша грамматика является правильной.
# Постройте КС-грамматику для языка слов над алфавитом $\{0, 1\}$, в которых число нулей равно удвоенному числу единиц. Докажите, что ваша грамматика является правильной.
# Постройте КС-грамматику для языка слов над алфавитом $\{0, 1\}$, которые не являются палиндромами.
# Постройте КС-грамматику для языка $0^k1^n2^{k+n}$.
# Постройте КС-грамматику для языка $0^k1^n2^{k+n}\cup 1^k0^n2^{k+n}$. Сделайте вывод о свойствах КС-языков.
# Постройте КС-грамматику для языка $0^k1^n2^{k+n}1^i0^j2^{i+j}$. Сделайте вывод о свойствах КС-языков.
# Постройте КС-грамматику для языка $0^i1^j2^k$, $i \ne j$ или $j \ne k$.
# Постройте КС-грамматику для языка слов над алфавитом $\{0, 1\}$, которые не являются тандемными повторами.
# задание на занятии
# задание на занятии
# задание на занятии
# задание на занятии
# задание на занятии
# задание на занятии
# Докажите, что язык $0^a1^b2^c$, где $a < b < c$ не является КС.
# Постройте МП-автомат для языка $0^n1^n$.
# Постройте МП-автомат для языка слов, где число нулей равно числу единиц.
# Постройте МП-автомат для языка $0^n1^{2n}$.
# Постройте МП-автомат для языка $0^n1^m2^{n+m}$.
# Постройте МП-автомат для языка $0^{2n}1^n$.
# Постройте МП-автомат для языка $0^n1^n\cup0^n1^{2n}$.
# Постройте МП-автомат для языка $a^ib^jc^k$, где $i=2j$ или $j=2k$.
# Постройте МП-автомат для языка слов $0^n1^m$, где $n \le m \le 2n$.
# Докажите, что для любых $p$ и $q$ существует МП-автомат для языка слов $0^n1^m$, где $n/m=p/q$
# задание на занятии
# задание на занятии
# Постройте автомат с магазинной памятью для языка слов, которые не являются правильной скобочной последовательностью.
# Постройте автомат с магазинной памятью для языка слов, которые не являются тандемными повторами.
# Постройте автомат с магазинной памятью для языка слов над алфавитом $\{0, 1, 2\}$, которые содержат равное число двоек и равное число единиц, или равное число двоек и равное число нулей.
# Существует ли для языка из предыдущего задания детерминированный автомат?
# Постройте автомат с магазинной памятью для языка палиндромов.
# Докажите, что для любого автомата с магазинной памятью существует эквивалентный, который на каждом переходе кладет в стек не более 2 символов. Ваша конструкция должна сохранять детерминированность автомата, если ранее он был детерминированным.
# Докажите, что для любого детерминированного автомата с магазинной памятью существует эквивалентный, который при $\varepsilon$-переходе только снимает или заменяет верхний символ стека (то есть размер стека не увеличивается на $\varepsilon$-переходах).
# Рассмотрим детерминированный автомат с магазинной памятью, для которого выполнены свойства из двух предыдущих заданий. Докажите, что для любого состояния $p$ автомата и строки $\gamma$ в стеке существует строка $s$, для которой выполняется следующее свойство. Начав в состоянии $p$ и со стеком $\gamma$, считав строку $s$ автомат переходит некоторое состояние $q$ и имеет в стеке $\beta$, причем какую бы строку далее автомат не получил на вход, на вершине стека никогда не окажется второй символ $\beta$.
# На основании трех предыдущих заданий докажите, что не существует детерминированного автомата с магазинной памятью для языка палиндромов.
 
</wikitex>
1632
правки

Навигация