Изменения

Перейти к: навигация, поиск

Sharp SAT

8700 байт добавлено, 19:20, 4 сентября 2022
м
rollbackEdits.php mass rollback
== Определение ==
<tex>\#SAT = \{ <\langle \varphi, k> \rangle | \varphi</tex> имеет <tex>k</tex> удовлетворяющих наборов <tex>\}</tex>
== Утверждение ==
== Доказательство ==
Для доказательства будем строить вероятностную программу ''Verifier'', которая хочет проверить, верно ли, что заданная формула <tex>\varphi</tex> имеет ровно <tex>k</tex> удовлетворяющих наборов. Программа ''Verifier'' может совершить не больше полинома от длины входа действий, а также может обращаться к программе ''Prover'', которая пытается любым возможным способом убедить ''Verifier'' в верности рассматриваемого утверждения. Далее в программе ''Verifier'' будем писать "проверим ...", что означает проверку соответствующего условия, и, при ложности, ''Verifier'' будет сразу завершаться и возвращать ''false'', т.к. ''Prover'' её обманывает, а значит, нет правильного доказательства проверяемого утверждения. ''Verifier'' будет выполнять следующие шаги. Шаг 0. Пусть формула <tex>\varphi</tex> каккаким-то либо образом записана. Пусть формула <tex>\varphi</tex> имеет <tex>n</tex> переменных. Сделаем следующие заменыи получим формулу <tex>A(x_1, x_2, ..., x_n)</tex>:
# <tex>x \land y \to x \cdot y</tex>
# <tex> \lnot x \to 1 - x</tex>
# <tex> x \lor y \to x + y - x \cdot y = 1 - (1 - x) \cdot (1 - y)</tex>
Заметим, что длина формулы возрастет не на многобольше, чем в константу раз. Пусть полином <tex>A(x_1, x_2, ..., x_n)</tex> имеет степень <tex>d</tex>.
Итак, надо проверить следующее уравнение: <tex>\sum_{x_1 = 0}^{1}\sum_{x_2 = 0}^{1}...\sum_{x_n = 0}^{1} A(x_1, x_2, ..., x_n) = k</tex>.
 
Попросим ''Prover'' 'а прислать ''Verifier'' 'у такое простое число <tex>p</tex>, что <tex>max(2^n+1, k_p) \le p \le 2 \cdot max(2^n+1, k_p)</tex>, и сертификат о его простоте.
Проверим простоту <tex>p</tex> по сертификату и условие <tex>max(2^n+1, k_p) \le p \le 2 \cdot max(2^n+1, k_p)</tex>. Константу <tex>k_p</tex> определим позднее.
 
Далее будем вычислять значения и проверять равенства по модулю <tex>p</tex>.
 
Пусть <tex>A_0(x_1) = \sum_{x_2 = 0}^{1}\sum_{x_3 = 0}^{1}...\sum_{x_n = 0}^{1} A(x_1, x_2, ..., x_n)</tex>.
 
Попросим ''Prover'' 'а прислать ''Verifier'' 'у формулу <tex>A_0(x_1)</tex>.
Проверим следующее утверждение: <tex>A_0(0) + A_0(1) = k</tex>.
 
Заметим, что размер формулы <tex>A_0(x_1)</tex> будет полином от длины входа ''Verifier'' 'а. Этот факт следует из того, что формула имеет степень меньшую либо равную <tex>d</tex>, и она от одной переменной. Поэтому её можно представить так: <tex>A_0(x) = \sum_{i = 0}^{d} C_i \cdot x ^ i</tex>, и попросить ''Prover'' 'а прислать только сами коэффициенты <tex>C_i</tex> по модулю <tex>p</tex>.
 
Шаг 1.
 
Пусть <tex>r_1 = random(p)</tex>. Отправим <tex>r_1</tex> программе ''Prover''.
 
Пусть <tex>A_1(x_2) = \sum_{x_3 = 0}^{1}\sum_{x_4 = 0}^{1}...\sum_{x_n = 0}^{1} A(r_1, x_2, ..., x_n)</tex>.
 
Попросим ''Prover'' 'а прислать ''Verifier'' 'у формулу <tex>A_1(x_2)</tex>.
Проверим следующее утверждение: <tex>A_1(0) + A_1(1) = A_0(r_1)</tex>.
 
Шаг 2.
 
...
 
Шаг <tex>n</tex>.
 
Пусть <tex>r_n = random(p)</tex>. Отправим <tex>r_n</tex> программе ''Prover''.
 
Пусть <tex>A_n() = A(r_1, r_2, ..., r_n)</tex>.
 
Попросим программу ''Prover'' прислать ''Verifier'' 'у значение <tex>A_n()</tex>.
Проверим следующее утверждение: <tex>A_n() = A_{n-1}(r_n)</tex>.
А также сами подставим <tex>r_1, r_2, ..., r_n</tex> в <tex>A(x_1, x_2, ..., x_n)</tex> и проверим правильность присланного значения <tex>A_n()</tex>.
 
Возвращаем ''true''.
 
 
Итак, остается доказать, что написанный ''Verifier'' - корректный ''Verifier'' для языка <tex>\#SAT</tex>. Таким образом, нужно доказать:
# Построенный ''Verifier'' - вероятностная машина Тьюринга, совершающая не более полинома от длины входа действий.
# <tex>\langle \varphi, k \rangle \in \#SAT \Rightarrow \exists Prover : P(Verifier^{Prover}(x)) \ge 2/3</tex>.
# <tex>\langle \varphi, k \rangle \notin \#SAT \Rightarrow \forall Prover : P(Verifier^{Prover}(x)) \le 1/3</tex>.
 
Доказательство:
 
# Из программы ''Verifier'' видно, что она работает за <tex>O(poly(|input|))</tex>.
# Если <tex>\varphi</tex> имеет ровно <tex>k</tex> удовлетворяющих наборов, то существует такая программа ''Prover'', что <tex>P(Verifier^{Prover}(x)) = 1</tex>. Такая программа:
## Присылает, например, первое простое число, большее <tex>max(2^n+1, k_p)</tex>, и сертификат.
## Считает сумму <tex>A_0(x_1)</tex> и присылает формулу.
## Получает <tex>r_1</tex>.
## Считает сумму <tex>A_1(x_2)</tex> и присылает формулу.
## ...
# Пусть <tex>\varphi</tex> имеет не <tex>k</tex> удовлетворяющих наборов. Тогда для того, что бы ''Verifier'' вернул ''true'', необходимо ''Prover'' 'у посылать такие <tex>A_i</tex>, чтобы выполнялись все проверяемые условия. Посмотрим на то, что он может послать:
 
Шаг 0.
 
Так как <tex>\varphi</tex> имеет не <tex>k</tex> удовлетворяющих наборов, то ''Prover'' не может послать правильное <tex>A_0</tex> – не выполнится условие <tex>A_0(0) + A_0(1) = k</tex>. Поэтому он посылает не <tex>A_0</tex>, а некое <tex>\tilde{A}_0</tex>.
 
Шаг 1.
 
Во первых, отметим, что ситуация <tex>A_0(r_1) = \tilde{A}_0(r_1)</tex> происходит с вероятностью меньшей либо равной <tex>d / p</tex> для некоторого случайно выбранного <tex>r_1</tex>, что следует из [[Лемма_Шварца-Зиппеля|леммы Шварца-Зиппеля]]. Таким образом, с вероятностью большей либо равной <tex>1 - d / p : A_0(r_1) \ne \tilde{A}_0(r_1)</tex> и, ввиду того, что должно выполняться условие <tex>A_1(0) + A_1(1) = A_0(r_1)</tex>, получаем, что <tex>A_1</tex> тоже будет неправильное, т.е. некоторое <tex>\tilde{A}_1</tex>.
 
Шаг 2.
 
...
 
Шаг <tex>n</tex>.
 
С вероятностью <tex>1 - d / p : A_{n-1}(r_n) \ne \tilde{A}_{n-1}(r_n)</tex>, и потому ''Verifier'' получит не <tex>A_n</tex>, а <tex>\tilde{A}_n</tex>.
 
Из этого процесса заметим, что с вероятностью большей либо равной <tex>(1 - d / p) ^ n</tex> мы дойдем до последнего шага и будем имееть <tex>\tilde{A}_n</tex> вместо <tex>A_n</tex>. Так как на шаге <tex>n</tex> ''Verifier'' вычисляет <tex>A_n</tex> и проверяет значение, то ''Verifier'' вернет ''false''.
 
Так как мы хотим сделать вероятность возврата ''false'' большую либо равную <tex>2/3</tex>, то выберем <tex>k_p</tex> так, чтобы <tex>(1-d/k_p)^n \ge 2/3</tex>. Возьмем <tex>k_p = 3 d \cdot n</tex>. Заметим, что длина <tex>k_p</tex> есть <tex>poly(|input|)</tex>. Из разложения функции по Тейлору получаем: <tex>(1-d/k_p)^n = (1 - 1/(3n))^n = 1 - 1/3 + \frac{n(n - 1)}{2 (3n)^2} - \frac{n(n-1)(n-2)}{6 (3n)^3} + ... </tex>. Так как <tex>n</tex> - целое неотрицательное число, то: <tex>(1-d/k_p)^n \ge 2/3 + \frac{n(n-1)}{n^2}(\frac{1}{2 \cdot 3^2} - \frac{1}{6 \cdot 3^3}) + ... \ge 2/3</tex>.
 
Утверждение доказано.
1632
правки

Навигация