Лемма о рукопожатиях — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Значок суммы..)
м (rollbackEdits.php mass rollback)
 
(не показано 56 промежуточных версий 10 участников)
Строка 1: Строка 1:
== Лемма о рукопожатиях ==
+
== Неориентированный граф ==
  
Сумма степеней всех вершин графа (или мультиграфа без петель) — четное число, равное удвоенному числу ребер:
+
{{Лемма
<math>\sum\limits_{v\in V(G)} deg\ v=2 |E(G)|</math>
+
|statement=
 +
Сумма степеней всех вершин графа (или мультиграфа без петель) — чётное число, равное удвоенному числу рёбер:
 +
<br /> <tex> \sum\limits_{v\in V(G)} deg\ v=2\cdot|E(G)|</tex>
 +
|proof=
 +
Возьмем пустой граф. Сумма степеней вершин такого графа равна нулю. При добавлении ребра, связывающего любые две вершины, сумма всех степеней увеличивается на 2 единицы. Таким образом, сумма всех степеней вершин чётна и равна удвоенному числу рёбер.
 +
}}
 +
Например, для следующего графа выполнено: <tex>deg(1)+\ldots+deg(6)=16=2\cdot|E|</tex>
  
{{Hider|
+
[[Файл:undir_grap.png]]
  title = Доказательство |
+
 
  hidden = 1 |
+
'''Следствие 1.''' В любом графе число вершин нечётной степени чётно.
  title-style = text-align: left; |
+
 
  content-style = text-align: justify; |
+
'''Следствие 2.''' Число рёбер в полном графе <tex dpi=150>\frac{n\cdot(n-1)}{2} </tex>.
  content =
+
 
Если взять граф с вершинами, вообще не связанными друг с другом, то сумма степеней этих вершин равна нулю. При добавлении ребра, связывающего любые две вершины, увеличиваем сумму всех степеней на 2 единицы. Таким образом, сумма всех степеней вершин четна и равна удвоенному числу ребер.
+
<br />
 +
 
 +
== Ориентированный граф ==
 +
 
 +
{{Лемма
 +
|statement=
 +
Сумма входящих и исходящих степеней всех вершин ориентированного графа — чётное число, равное удвоенному числу рёбер:
 +
<br /> <tex>\sum\limits_{v\in V(G)} deg^{-}\ v \; + \sum\limits_{v\in V(G)} deg^{+}\ v=2\cdot |E(G)| </tex>
 +
 
 +
|proof=
 +
[[Файл:dir_grap.png|thumb|300px| <tex>deg^{-}+deg^{+}=10=2\cdot |E|</tex>]]
 +
Аналогично доказательству леммы о рукопожатиях неориентированном графе.
 +
То есть возьмем пустой граф и будем добавлять в него рёбра. При этом каждое добавление ребра увеличивает на единицу сумму входящих и на единицу сумму исходящих степеней. Таким образом, сумма входящих и исходящих степеней всех вершин ориентированного графа чётна и равна удвоенному числу рёбер.
 
}}
 
}}
  
''Следствие 1''
+
== Бесконечный граф ==
В любом графе число вершин нечетной степени четно
+
[[Файл:inf_grap.png|thumb|300px|right|Пример бесконечного графа, в котором не выполняется лемма]]
 +
 
 +
В бесконечном графе лемма не работает, даже в случае с конечным числом вершин нечётной степени. Покажем это на примере.
 +
 
 +
При выборе бесконечного пути из вершины <tex> V </tex> (см. рисунок справа) имеем путь, в котором все вершины кроме стартовой имеют чётную степень, что противоречит следствию из леммы.
 +
 
 +
== Регулярный граф ==
 +
{{Определение
 +
|definition=
 +
Граф называется '''регулярным''', если степени всех его вершин равны.
 +
}}
 +
{{Утверждение
 +
|statement=
 +
В регулярном графе с <tex> n </tex> вершинами ровно <tex dpi=150>\frac{k\cdot n}{2} </tex> рёбер.
 +
 
 +
}}
 +
 
 +
 
 +
 
 +
{{Утверждение
 +
|statement=Если степень каждой вершины нечётна и равна <tex> k</tex>, то количество рёбер кратно <tex> k </tex>.
 +
|proof= [[Файл:reg_grap.png|thumb|300px|right|Регулярный граф с <tex dpi=140>\frac{k\cdot n}{2} = \frac{3\cdot 6}{2}=9 </tex> рёбрами ]]
 +
Действительно, так как степень каждой вершины нечётна, то число вершин в графе чётно(так сумма степеней всех вершин чётна). Пусть <tex> n = 2\cdot r </tex>, то равенство принимает вид <tex dpi=150>|E| =\frac{k\cdot n}{2} = \frac{2\cdot k\cdot r}{2}=k\cdot r </tex>, то есть количество рёбер кратно <tex> k</tex>.
 +
}}
  
''Следствие 2''
+
== Источники информации ==
Число ребер в полном графе <math>\frac{n(n-1)}{2} </math>
+
* Lecture Notes on Graph Theory By Tero Harju, Department of Mathematics University of Turku, 2011 — с. 7-8
 +
* [http://en.wikipedia.org/wiki/Handshaking_lemma Handshaking lemma — Wikipedia]
 +
[[Категория: Алгоритмы и структуры данных]]
 +
[[Категория: Основные определения теории графов]]

Текущая версия на 19:20, 4 сентября 2022

Неориентированный граф

Лемма:
Сумма степеней всех вершин графа (или мультиграфа без петель) — чётное число, равное удвоенному числу рёбер:
[math] \sum\limits_{v\in V(G)} deg\ v=2\cdot|E(G)|[/math]
Доказательство:
[math]\triangleright[/math]
Возьмем пустой граф. Сумма степеней вершин такого графа равна нулю. При добавлении ребра, связывающего любые две вершины, сумма всех степеней увеличивается на 2 единицы. Таким образом, сумма всех степеней вершин чётна и равна удвоенному числу рёбер.
[math]\triangleleft[/math]

Например, для следующего графа выполнено: [math]deg(1)+\ldots+deg(6)=16=2\cdot|E|[/math]

Undir grap.png

Следствие 1. В любом графе число вершин нечётной степени чётно.

Следствие 2. Число рёбер в полном графе [math]\frac{n\cdot(n-1)}{2} [/math].


Ориентированный граф

Лемма:
Сумма входящих и исходящих степеней всех вершин ориентированного графа — чётное число, равное удвоенному числу рёбер:
[math]\sum\limits_{v\in V(G)} deg^{-}\ v \; + \sum\limits_{v\in V(G)} deg^{+}\ v=2\cdot |E(G)| [/math]
Доказательство:
[math]\triangleright[/math]
[math]deg^{-}+deg^{+}=10=2\cdot |E|[/math]

Аналогично доказательству леммы о рукопожатиях неориентированном графе.

То есть возьмем пустой граф и будем добавлять в него рёбра. При этом каждое добавление ребра увеличивает на единицу сумму входящих и на единицу сумму исходящих степеней. Таким образом, сумма входящих и исходящих степеней всех вершин ориентированного графа чётна и равна удвоенному числу рёбер.
[math]\triangleleft[/math]

Бесконечный граф

Пример бесконечного графа, в котором не выполняется лемма

В бесконечном графе лемма не работает, даже в случае с конечным числом вершин нечётной степени. Покажем это на примере.

При выборе бесконечного пути из вершины [math] V [/math] (см. рисунок справа) имеем путь, в котором все вершины кроме стартовой имеют чётную степень, что противоречит следствию из леммы.

Регулярный граф

Определение:
Граф называется регулярным, если степени всех его вершин равны.
Утверждение:
В регулярном графе с [math] n [/math] вершинами ровно [math]\frac{k\cdot n}{2} [/math] рёбер.


Утверждение:
Если степень каждой вершины нечётна и равна [math] k[/math], то количество рёбер кратно [math] k [/math].
[math]\triangleright[/math]
Регулярный граф с [math]\frac{k\cdot n}{2} = \frac{3\cdot 6}{2}=9 [/math] рёбрами
Действительно, так как степень каждой вершины нечётна, то число вершин в графе чётно(так сумма степеней всех вершин чётна). Пусть [math] n = 2\cdot r [/math], то равенство принимает вид [math]|E| =\frac{k\cdot n}{2} = \frac{2\cdot k\cdot r}{2}=k\cdot r [/math], то есть количество рёбер кратно [math] k[/math].
[math]\triangleleft[/math]

Источники информации