Изменения

Перейти к: навигация, поиск

Анализ реализации с ранговой эвристикой

3690 байт добавлено, 19:21, 4 сентября 2022
м
rollbackEdits.php mass rollback
Пусть <tex> union(v1v_1,v2v_2) </tex> - процедура слития объединения двух множеств , содержащих <tex> v1 v_1 </tex>,и <tex> v2 v_2 </tex>, а <tex> get(v) </tex> - поиск корня поддерева представителя множества, содержащего <tex> v </tex>. Рассмотрим <tex> n </tex> операций <tex> union </tex> и <tex> m </tex> операций <tex> get </tex>(<tex> m > n </tex>). Для удобства и без потери Не теряя общности , будем считать , что <tex> union </tex> принимает в качестве аргументов корни поддеревьев и <tex> m > n </tex>представителей, то есть <tex> union(v1v_1,v2v_2) </tex> заменяем на <tex> union(get(v1v_1),get(v2v_2)) </tex>.
Тогда нам надо оценить Оценим стоимость операции <tex> get(v) </tex>. Обозначим <tex>R(v)</tex> - ранг вершины,<tex>P(v)</tex> - отец вершины— представитель множества, содержащего <tex> v </tex>,<tex>L(v) </tex> - самый первый отец вершины, <tex> K(v) </tex> - количество вершин в поддерева поддереве, корнем которого является <tex> v </tex> .
{{Утверждение
|statement=
<tex> R(P(v))>R(v) </tex>
|proof=
Из того как работает функция принципа работы функции <tex> get </tex> следует:1.#<tex> R(L(v))>R(v) </tex>. 2. #Между <tex> v </tex> и <tex> P(v) </tex> существует путь вида : <tex> v -> \rightarrow L(v) -> \rightarrow L(L(v)) ... ->\rightarrow \dots \rightarrow P(v) </tex>.Записав неравенство из первого пункта вдоль пути из второго пункта следует что <tex> R(P(v))>R(v) </tex> , получаем требуемое.
}}
{{Утверждение
|statement=
<tex> R(v)=i => \Rightarrow K(v) \ge 2^i </tex>
|proof=
Докажем по индукции:
 Для 0 равенство очевидноеочевидно.Ранг вершины стает станет равным <tex> i </tex> при сливании объединении поддеревьев ранга <tex>i-1</tex>, отсюда следуетследовательно:<tex>K(v)>=\ge K(v1v_1)+K(v2v_2) \ge 2^{i-1}+2^{i-1} \ge 2^i </tex>.
}}
Из последнего утверждения следует:
 
#<tex> R(v) \le \log_2(n) </tex>.
#Количество вершин ранга <tex> i \le {n \over 2^i} </tex>.
 
{{Теорема
|statement=
Амортизационная стоимость <tex> get = O(\log^{*}(n)) </tex>
|proof=
Рассмотрим некоторое число <tex> x </tex>.
Разобьем наши ребра на три класса:
 
#Ведут в корень или в сына корня.
#<tex> R(P(v)) \ge x^{R(v)}</tex>.
#Все остальные.
 
Обозначим эти классы <tex> T_1, T_2, T_3 </tex>.
 
Амортизационная стоимость
 
<center>
<tex>
S = {\sum_{get} \limits} ({\sum_{v:v \in get,v \in T_1} \limits 1}
+
{\sum_{v:v \in get,v \in T2} \limits 1} + {\sum_{v: \in get,v \in T_3} \limits 1} ) / m
</tex>,
</center>
где <tex> {v \in get } </tex> означает, что ребро, начало которого находится в <tex> v </tex>, было пройдено во время выполнения текущего <tex> get </tex>.
Ребро <tex> v </tex> эквивалентно вершине, в которой оно начинается.
В силу того, что <tex>{\sum_{v:v \in get,v \in T_1} \limits 1} = O(1) </tex> получаем: <center><tex>S = O(1) + {\sum_{get} \limits} ~ {\sum_{v:v \in get,v \in T_2} \limits} 1/m+ {\sum_{get} \limits} ~ {\sum_{v:v \in get,v \in T_3} \limits} 1 / m</tex>.</center> Во время <tex> get </tex> после прохождения K ребер из второго класса <tex> R(v_1) \ge x^{x^{.^{.^{.^{x^{R(v)}}}}}} </tex>. Из выше сказанного и первого следствия второго утверждения получаем, что:<center><tex> {\sum_{v:v \in get,v \in T_2} \limits} \le \log^*_x(\log_2(n)) = O(\log^*(n))</tex>.</center> Для того, чтобы <tex> \log^*_x(\log_2(n)) </tex> существовал необходимо, чтобы <tex> x > e ^{ 1 /e } \approx 1,44 </tex>.  Рассмотрим сумму<center> <tex>{\sum_{get} \limits} ~ {\sum_{v:v \in get,v \in T_3} \limits} 1~/m < {\sum_{get} \limits} ~ {\sum_{v:v \in get,v \in T_3} \limits} 1/n </tex>. </center> Из первого утверждения и в силу использования сжатия путей следует,что <tex> R(P(x))</tex> cтрого увеличивается при переходе по ребру из <tex> T_3 </tex>. Как максимум через <tex> x^{R(k)} </tex> переходов ребро перестанет появляться в классе <tex> T_3 </tex>. <center><tex>{\sum_{get} \limits}~ {\sum_{v:v \in get,v \in T_3} \limits} 1/n = {\sum_v \limits ~\sum_{get: in ~ this ~ get ~ v \in T_3} \limits } 1/n \le \sum_v \limits x^{R(v)} /n</tex>.</center> Из второго следствия второго утверждения следует:<center> <tex> {\sum_{get} \limits}~ {\sum_{v:v \in get,v \in T_3} \limits} 1/n \le \sum_{Rank=0}^{\log_2(n)} \limits {nx^{Rank} \over 2^{Rank} n}</tex>.</center> При <tex> x < 2~</tex>:<center><tex>{\sum_{get} \limits}~ {\sum_{v:v \in get,v \in T3} \limits} 1/n\le\sum_{Rank=0}^{\log_2(n)} \limits {x^{Rank} \over 2^{Rank}}\le\sum_{Rank=0}^\infty \limits {x^{Rank} \over 2^{Rank}}\le{ 2 \over 2-x } = O(1)</tex>.</center>   Итак <tex> S = O(1) + O(\log^*(x)) + O(1) = O(\log^*(x)) </tex>.В силу того, что интервал <tex> (1,45...2) </tex> не пустой, теорема доказана. }}
1. <tex> R(v)<= log_2(n) </tex>= Ссылки ==
2* [http://en.wikipedia. Количество вершин ранга <tex> i <= {n \over 2^i} <org/wiki/tex>Iterated_logarithm Wikipedia -Iterated logarithm]
1632
правки

Навигация