1632
правки
Изменения
м
rollbackEdits.php mass rollback
[[Пространство L_p(E)|<<]][[Теорема Фубини|>>]] В этом параграфе будет дан геометрический смысл интеграла Лебега. {{Определение|definition=Пусть <tex> E \subset \mathbb R^n, f : E \to \mathbb R_+, f </tex> — измерима.<br> <tex> G(f) = G = \{ (x_1 \ldots x_{n + 1}) \in \mathbb R^{n+1} : (x_1 \ldots x_n) \in E, 0 \le x_{n + 1} \le f(x_1 \ldots x_n) \} </tex> — '''подграфик функции'''.}} == Цилиндры == Если <tex> f(x_1 \ldots x_n) = c \ge 0 </tex> на <tex> E </tex>, то подграфик называется цилиндром в <tex> \mathbb R^{n + 1} </tex>. {{Утверждение|statement=<tex> G </tex> - цилиндр высоты <tex> c \ge 0 </tex>, измеримое <tex> E \subset \mathbb R^n </tex> — основание. Тогда он измерим и при <tex> c > 0: \lambda_{n+1} G = c \lambda_n E </tex>, при <tex> c = 0: \lambda_{n+1} G = 0 </tex>.|proof=Доказательство ведем от простого к сложному, применяется критерий <tex> \mu^* </tex>-измеримости. 1) Пусть <tex> E </tex> — параллелепипед (ячейка), тогда <tex> G </tex> тоже ячейка, формула выполняется. 2) Пусть <tex> E </tex> — открытое множество. Его можно записать в форме счетного объединения дизъюнктных ячеек: <tex> E = \bigcup\limits_n \Delta_n </tex>. Пусть <tex> G_n = \Delta_n \times [0, c] </tex>; <tex> G = E \times [0, c] = \bigcup\limits_n G_n </tex> — тоже дизъюнктное объединение. <tex> G_n </tex> — измеримы, следовательно, <tex> G </tex> — измеримо. По сигма-аддитивности меры, <tex> \lambda_{n+1} G = \sum\limits_m \lambda_{n+1} G_m = \sum\limits_m c \lambda_n \Delta_m = c \sum\limits_m \lambda_n \Delta_m = c \lambda_n E </tex>. 3) <tex> E </tex> — ограниченное замкнутое множество. Возьмем некий открытый параллелепипед <tex> \Delta </tex>, такой, что <tex> E \subset \Delta </tex>. <tex> \overline E = \Delta \setminus E </tex> — открыто — можно применить пункт 2: <tex> \lambda_{n+1} \overline G = c \lambda_n \overline E </tex>. <tex> \lambda_{n+1} (\Delta \times [0, c]) = c \lambda_n \Delta </tex> <tex> E = \Delta \setminus \overline E, \lambda_{n+1} G = \lambda_{n+1} (\Delta \times [0, c]) - \lambda_{n+1}(\overline G) = c(\lambda_n \Delta - \lambda_n \overline E) = c \lambda_n E </tex>. 4) <tex> E </tex> — ограниченное и измеримое. Для произвольного <tex> \varepsilon > 0 </tex> подбираем <tex> F_\varepsilon </tex> — замкнутое и <tex> G_\varepsilon </tex> — открытое: <tex> F_\varepsilon \subset E \subset G_\varepsilon, \lambda_n G_\varepsilon - \lambda_n F_\varepsilon < \varepsilon </tex>. <tex> F_\varepsilon \times [0, c] \subset G \subset G_\varepsilon \times [0, c] </tex>. <tex> \lambda_{n + 1} (G_\varepsilon \times [0, c]) - \lambda_{n+1} (F_\varepsilon \times [0, c]) = c (\lambda_n G_\varepsilon - \lambda_n F_\varepsilon) < c \varepsilon </tex>. <tex> \varepsilon </tex> — мало, следовательно, по критерию <tex> \mu^* </tex>-измеримости, <tex> G </tex> — измеримо. По монотонности меры: <tex> \lambda_{n+1} F_\varepsilon \le \lambda_{n+1} G \le \lambda_{n+1} G_\varepsilon </tex> Также, так как <tex> \lambda_n F_\varepsilon \le \lambda_n E \le \lambda_n G_\varepsilon </tex>, то <tex> \lambda_{n+1} F_\varepsilon \le c \lambda_{n} E \le \lambda_{n+1} G_\varepsilon </tex>. Устремляя <tex> \varepsilon </tex> к нулю, в пределе приходим к <tex> \lambda_{n+1} G = c \lambda_n E </tex>. 5) <tex> E </tex> — произвольное измеримое множество. Из сигма-конечности меры Лебега следует, что <tex> E = \bigcup\limits_{m=1}^{\infty} E_m </tex> — объединение <s>возрастающих последовательностей</s> ограниченных измеримых попарно дизъюнктных множеств. Цилиндр <tex> G = \bigcup\limits_{m=1}^{\infty} G_m </tex>, где <tex> G_m = E_m \times [0, c] </tex>. По уже доказанному, <tex> \lambda_{n+1} G_m = c \lambda_n E_m </tex>, а по свойствам меры, <tex> \lambda_{n+1} G = \sum\limits_m \lambda_{n+1} G_m = c \sum\limits_m \lambda_n E_m = c \lambda_n E </tex>. 6) Рассмотрим случай <tex> c = 0 </tex>. Пусть <tex> \lambda_n E < + \infty </tex>, погрузим цилиндр <tex> G </tex> в цилиндр <tex> G' </tex> с тем же основанием, и сколь угодно малой высотой <tex> c' > 0 </tex>. Из этого получаем, что <tex> G </tex> измерим и его мера — нулевая. В противном случае, представим E в виде счетного объединения множеств с конечной мерой. Тогда <tex> G = \bigcup\limits_{m=1}^{\infty} G_m </tex>, где <tex> G_m </tex> — цилиндр с основанием <tex> E_m </tex> и высотой 0. По доказанному, <tex> \lambda_{n+1} G_m = 0</tex>, а тогда и <tex> \lambda_{n+1} G = 0 </tex>.}} == Теорема о мере подграфика == {{Теорема|about=о мере подграфика|statement=Если <tex> f(x) \ge 0 </tex> и измерима на множестве <tex> E \in \mathbb R^n </tex>, то её подграфик <tex> G(f) </tex> — измерим, а <tex> \lambda_{n+1}(G) = \int\limits_E f d \lambda_n </tex>.|proof= 0) Базовым случаем будет тот, когда дело сводится к суммам Лебега-Дарбу. <tex> f </tex> — ограниченная функция, <tex> E </tex> — измеримое множество конечной меры. <tex> f </tex> — измерима, следовательно, интеграл Лебега существует: <tex> \exists \int\limits_E f d \lambda_n </tex> Рассмотрим <tex> \tau: E = \bigcup\limits_{j=1}^p e_j </tex> — дизъюнктны. <tex> m_j = \inf\limits_{e_j} f(x), M_j = \sup\limits_{e_j} f(x) </tex> <tex> \underline s (\tau) = \sum\limits_{j=1}^p m_j \lambda_n e_j </tex>, <tex> \overline S (\tau) = \sum\limits_{j=1}^p M_j \lambda_n e_j </tex> <tex> \underline G_j = e_j \times [0, m_j] </tex>, <tex> \overline G_j = e_j \times [0, M_j] </tex> — цилиндры с основанием <tex> e_j </tex> и высотами <tex> m_j, M_j </tex>. Представим <tex> \underline G</tex> как дизъюнктное объединение: <tex> \underline G = \bigcup_{j=1}^p \underline G_j </tex>. Аналогично, <tex> \overline G \bigcup_{j=1}^p \overline G_j </tex>. Ясно, что <tex> \underline G \subset G \subset \overline G </tex>. При этом: <tex> \lambda_{n+1} \underline G(\tau) = \sum\limits_{j=1}^p \lambda_{n+1} \underline G_j = \sum\limits_{j=1}^p m_j \lambda_n e_j = \underline S(\tau) </tex> <tex> \lambda_{n+1} \overline G(\tau) = \sum\limits_{j=1}^p \lambda_{n+1} \overline G_j = \sum\limits_{j=1}^p M_j \lambda_n e_j = \overline S(\tau) </tex> Разность <tex> \lambda_{n+1} \overline G(\tau) - \lambda_{n+1} \underline G(\tau) = \overline S(\tau) - \underline S (\tau) </tex> сколь угодно мала в силу существования интеграла за счет выбора разбиения <tex> \tau </tex>. По критерию <tex> \mu^* </tex>-измеримости, подграфик <tex> G </tex> оказывается измеримым и <tex> \lambda_{n+1} \underline G(\tau) = \underline s(\tau) \le \lambda_{n+1} G(f) \le \lambda_{n+1} \overline G(\tau) = \overline S(\tau)</tex> В разработкеэтом неравенстве разбиение — любое. Между парой сумм Лебега-Дарбу можно вставить только интеграл, значит, <tex> \lambda_{n+1} G(f) = \int\limits_E f d \lambda_n </tex>. Базовый случай разобран. 1) <tex> \lambda_n E = + \infty </tex>, <tex> f </tex> — ограничена на <tex> E </tex>. (По сигма-конечности меры?) Представим E как объединение возрастающей последовательности множеств <tex> E_m </tex> с конечной мерой, пусть <tex> G_m </tex> — подграфик сужения f на множестве <tex> E_m </tex>. <tex> \bigcup\limits_m G_m = G </tex> — измеримо. <tex> \lambda_{n+1} G = \lim \lambda_{n+1} G_m = \lim \int\limits_{E_m} f d \lambda_n = \int\limits_E f d \lambda_n </tex>(по сигма-аддитивности интеграла). 2) Если <tex> f </tex> не ограничена на <tex> E </tex>, то выстраиваем так называемые срезки: <tex> f_m(x) = \begin{cases} f(x), & f(x) \le m \\ m, & f(x) > m \end{cases} </tex> <tex> f_m(x) </tex> — измеримая, <tex> f_m(x) \xrightarrow[m \to \infty]{} f(x) </tex> <tex> f_m(x) </tex> — возрастает, <tex> f_m(x) \le f_{m+1} (x) </tex> По теореме Леви, <tex> \int\limits_E f_m d \lambda_n \to \int\limits_E f d \lambda_n </tex> Пусть <tex> G_m </tex> — подграфик срезки <tex> f_m </tex>. Подграфики срезок образуют возрастающую последовательность и <tex> G = \bigcup\limits_m G_m</tex>. Так как срезки — функция ограниченная, из первого пункта: <tex> \lambda_{n+1} G_m = \int\limits_E f_m d \lambda_n \to \int\limits_E f d \lambda_n </tex> <tex> \lambda_{n+1} G = \lim\limits_m \lambda_{n+1} G_m = \int\limits_E f d \lambda_n </tex>. Формула выведена в общем случае.}} [[Пространство L_p(E)|<<]][[Теорема Фубини|>>]][[Категория:Математический анализ 2 курс]]