Дерево Фенвика для некоммутативных операций — различия между версиями
м (rollbackEdits.php mass rollback)  | 
				|||
| (не показано 8 промежуточных версий 4 участников) | |||
| Строка 5: | Строка 5: | ||
Как и ранее, для обновления элемента в дереве нужно изменить все, что хранит результат операции с этим элементом. Но теперь нельзя просто применить операцию <tex> G </tex> (далее будем использовать мультипликативную нотацию) ко всем нужным элементам дерева. Пусть мы хотим изменить <tex> a_i </tex> на <tex> a_i' = a_i \cdot d </tex>, в данный момент обновляем элемент дерева с индексом <tex> j </tex>. Вместо <tex> a_{j \& (j + 1)} \cdot \ldots a_i \cdot d \cdot \cdot \ldots \cdot a_j </tex> мы получим <tex> a_{j \& (j + 1)} \cdot \ldots a_i \cdot \ldots \cdot a_j \cdot d </tex> (так как больше нельзя переставлять элементы местами в операции на отрезке, ответ будет неверен).  | Как и ранее, для обновления элемента в дереве нужно изменить все, что хранит результат операции с этим элементом. Но теперь нельзя просто применить операцию <tex> G </tex> (далее будем использовать мультипликативную нотацию) ко всем нужным элементам дерева. Пусть мы хотим изменить <tex> a_i </tex> на <tex> a_i' = a_i \cdot d </tex>, в данный момент обновляем элемент дерева с индексом <tex> j </tex>. Вместо <tex> a_{j \& (j + 1)} \cdot \ldots a_i \cdot d \cdot \cdot \ldots \cdot a_j </tex> мы получим <tex> a_{j \& (j + 1)} \cdot \ldots a_i \cdot \ldots \cdot a_j \cdot d </tex> (так как больше нельзя переставлять элементы местами в операции на отрезке, ответ будет неверен).  | ||
| − | + | Для решения этой задачи нужно удалить отрезок после изменяемого элемента, изменить элемент, после чего добавить этот отрезок снова.  | |
| − | ===   | + | {{Теорема  | 
| + | |statement=  | ||
| + | Пусть <tex> s_i = a_1 \cdot a_2 \cdot \ldots \cdot a_i </tex> — результат выполнения операции на префиксе <tex> i </tex>; <tex> s_{i, j} = s_i^{-1} \cdot s_j </tex> — результат ее выполнения на отрезке <tex> [i; j] </tex>. Тогда элемент дерева с индексом <tex> j </tex> обновляется как <tex> t_j' = t_j \cdot s_{i, j}^{-1} \cdot d \cdot s_{i, j} </tex>.  | ||
| + | |||
| + | |proof=  | ||
Может показаться, что этот способ не работает, так как <tex> s_i </tex>, возможно, уже было изменено, а <tex> s_j </tex> — еще нет, значит, мы удаляем не тот отрезок, который должны удалить. Убедимся, что на самом деле все обновляется правильно. Учитывая, что <tex> (x \cdot y)^{-1} = y^{-1} \cdot x^{-1} </tex>, получаем:  | Может показаться, что этот способ не работает, так как <tex> s_i </tex>, возможно, уже было изменено, а <tex> s_j </tex> — еще нет, значит, мы удаляем не тот отрезок, который должны удалить. Убедимся, что на самом деле все обновляется правильно. Учитывая, что <tex> (x \cdot y)^{-1} = y^{-1} \cdot x^{-1} </tex>, получаем:  | ||
| Строка 13: | Строка 17: | ||
<tex> {s_{i, j}'}^{-1} \cdot d \cdot s_{i, j}{'} = (d^{-1} \cdot s_{i, j})^{-1} \cdot d \cdot d^{-1} \cdot s_{i, j} = s_{i, j}^{-1} \cdot d \cdot d \cdot d^{-1} \cdot s_{i, j} = s_{i, j}^{-1} \cdot d \cdot s_{i, j} </tex>, то есть элемент дерева изменяется на правильное значение.  | <tex> {s_{i, j}'}^{-1} \cdot d \cdot s_{i, j}{'} = (d^{-1} \cdot s_{i, j})^{-1} \cdot d \cdot d^{-1} \cdot s_{i, j} = s_{i, j}^{-1} \cdot d \cdot d \cdot d^{-1} \cdot s_{i, j} = s_{i, j}^{-1} \cdot d \cdot s_{i, j} </tex>, то есть элемент дерева изменяется на правильное значение.  | ||
| − | + | }}  | |
=== Время работы ===  | === Время работы ===  | ||
| − | Пусть в дереве <tex> n </tex> элементов. Так как для каждого из <tex> O(\log  | + | Пусть в дереве <tex> n </tex> элементов. Так как для каждого из <tex> O(\log {n}) </tex> изменяемых элементов дерева мы совершаем дополнительно запрос суммы на отрезке(а он работает за <tex> O(\log {n}) </tex> операций), то асимптотическое время работы обновления элемента ухудшается до <tex> O(\log^2{n}) </tex>.  | 
| − | |||
| − | |||
| − | |||
| − | |||
== Пример ==  | == Пример ==  | ||
| Строка 72: | Строка 72: | ||
<tex> t_3' = \begin{pmatrix} 12 & 38 \\ 8 & 24 \end{pmatrix} = a_0 \cdot a_1 \cdot a_2' \cdot a_3 </tex>  | <tex> t_3' = \begin{pmatrix} 12 & 38 \\ 8 & 24 \end{pmatrix} = a_0 \cdot a_1 \cdot a_2' \cdot a_3 </tex>  | ||
| + | |||
| + | Итого в обновлённом дереве Фенвика всё верно:  | ||
| + | |||
| + | <tex> \begin{array}{c||c||c||c||c} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} &   | ||
| + | \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} &  | ||
| + | \begin{pmatrix} 3 & 4 \\ 2 & 4 \end{pmatrix} &  | ||
| + | \begin{pmatrix} 12 & 38 \\ 8 & 24 \end{pmatrix} &  | ||
| + | \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \\  | ||
| + | \hline  | ||
| + | t_0 = a_0 & t_1 = a_0 \cdot a_1 & t_2' = a_2' & t_3' = a_0 \cdot a_1 \cdot a_2' \cdot a_3 & t_4 = a_4 \\  | ||
| + | \end{array} </tex>  | ||
| + | ==См. также==  | ||
| + | * [[Дерево Фенвика]]  | ||
| + | * [[Дерево отрезков. Построение]]  | ||
| + | |||
| + | ==Источники информации==  | ||
| + | |||
| + | * [http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=F180153B9C0CD797594314B736E2CCC5?doi=10.1.1.14.8917&rep=rep1&type=pdf Peter M. Fenwick: A new data structure for cumulative frequency]  | ||
| + | * [http://en.wikipedia.org/wiki/Fenwick_tree Wikipedia — Fenwick tree]  | ||
| + | |||
| + | [[Категория: Дискретная математика и алгоритмы]]  | ||
| + | [[Категория: Дерево Фенвика]]  | ||
| + | [[Категория: Структуры данных]]  | ||
Текущая версия на 19:23, 4 сентября 2022
Обычное дерево Фенвика позволяет выполнять некоторую ассоциативную, коммутативную, обратимую операцию на отрезке с изменением элементов. Описываемая модификация дает возможность отказаться от коммутативности .
Обновление элемента
Как и ранее, для обновления элемента в дереве нужно изменить все, что хранит результат операции с этим элементом. Но теперь нельзя просто применить операцию (далее будем использовать мультипликативную нотацию) ко всем нужным элементам дерева. Пусть мы хотим изменить на , в данный момент обновляем элемент дерева с индексом . Вместо мы получим (так как больше нельзя переставлять элементы местами в операции на отрезке, ответ будет неверен).
Для решения этой задачи нужно удалить отрезок после изменяемого элемента, изменить элемент, после чего добавить этот отрезок снова.
| Теорема: | 
Пусть  — результат выполнения операции на префиксе ;  — результат ее выполнения на отрезке . Тогда элемент дерева с индексом  обновляется как .  | 
| Доказательство: | 
| 
 Может показаться, что этот способ не работает, так как , возможно, уже было изменено, а — еще нет, значит, мы удаляем не тот отрезок, который должны удалить. Убедимся, что на самом деле все обновляется правильно. Учитывая, что , получаем: ; , то есть элемент дерева изменяется на правильное значение. | 
Время работы
Пусть в дереве элементов. Так как для каждого из изменяемых элементов дерева мы совершаем дополнительно запрос суммы на отрезке(а он работает за операций), то асимптотическое время работы обновления элемента ухудшается до .
Пример
Пусть есть массив из пяти матриц :
Пусть — операция умножения матриц. Дерево Фенвика выглядит так:
Пусть теперь . Значит, надо изменить и .
После этого дерево выглядит так:
Пересчитаем :
Рассчитаем суммы:
Итого в обновлённом дереве Фенвика всё верно: