QpmtnriLmax — различия между версиями
Zemskovk (обсуждение | вклад) |
м (rollbackEdits.php mass rollback) |
||
(не показано 6 промежуточных версий 3 участников) | |||
Строка 12: | Строка 12: | ||
<table> | <table> | ||
<tr> | <tr> | ||
− | <td>[[Файл:Figure_5.2.png|500px|thumb|Рис. 1 | + | <td>[[Файл:Figure_5.2.png|500px|thumb|Рис. 1. Исходная сеть]]</td> |
− | <td>[[Файл:Figure_5.9.b.png|500px|thumb|Рис. 2 | + | <td>[[Файл:Figure_5.9.b.png|500px|thumb|Рис. 2. Расширение сети]]</td> |
</tr> | </tr> | ||
</table> | </table> | ||
Строка 21: | Строка 21: | ||
Пусть <tex> t_1 \leqslant t_2 \leqslant ... \leqslant t_r </tex> {{---}} упорядоченная последовательность всех значений <tex>r_i</tex> и <tex>d_i + L^*</tex>. | Пусть <tex> t_1 \leqslant t_2 \leqslant ... \leqslant t_r </tex> {{---}} упорядоченная последовательность всех значений <tex>r_i</tex> и <tex>d_i + L^*</tex>. | ||
− | Определим интервалы на исходной сети (Рис. 1) <tex> I_K := [t_{K-1}, t_K], \ T_K = t_K-t_{ | + | Определим интервалы на исходной сети (Рис. 1) <tex> I_K := [t_{K-1}, t_K], \ T_K = t_K-t_{K−1} </tex> для <tex> K = 2,..., r </tex>. Cчитаем, что станки занумерованы в порядке невозрастания скоростей <tex> s_1 \geqslant s_2 \geqslant . . . \geqslant s_m </tex> (также считаем <tex>s_{m+1} = 0</tex>). |
Искомая сеть строится с помощью расширения сети из задачи <tex>P \mid pmtn, r_i \mid L_{max}</tex>. Обозначим через <tex> J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex> набор предшественников узла <tex>I_K</tex>, тогда замененная нами подсеть определяется как <tex> I_K, J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex>. | Искомая сеть строится с помощью расширения сети из задачи <tex>P \mid pmtn, r_i \mid L_{max}</tex>. Обозначим через <tex> J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex> набор предшественников узла <tex>I_K</tex>, тогда замененная нами подсеть определяется как <tex> I_K, J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex>. | ||
Строка 32: | Строка 32: | ||
{{Теорема | {{Теорема | ||
|statement=Следующие утверждения эквивалентны: | |statement=Следующие утверждения эквивалентны: | ||
+ | :<tex>(a)</tex> Существует допустимое расписание. | ||
+ | :<tex>(b)</tex> В расширенной сети существует поток от <tex>s</tex> до <tex>t</tex> со значением <tex>\sum\limits_{i=1}^n p_i</tex>. | ||
− | + | |proof=<tex>(b) \Rightarrow (a)</tex> | |
− | |||
− | + | :Рассмотрим в расширенной сети поток величиной <tex>\sum\limits_{i = 1}^n {p_i}</tex>. Обозначим через <tex>x_{iK}</tex> общий поток, который идет от <tex>J_i</tex> до <tex>I_K</tex>. Заметим, что <tex>\sum\limits_{i = 1}^n \sum\limits_{K = 2}^r x_{iK} = \sum\limits_{i = 1}^n p_i</tex>. Достаточно показать, что для каждого подмножества <tex>A \subseteq \{ 1, . . . , n \}</tex> выполняется | |
− | Рассмотрим в расширенной сети поток величиной <tex>\sum\limits_{i = 1}^n {p_i}</tex>. Обозначим через <tex>x_{iK}</tex> общий поток, который идет от <tex>J_i</tex> до <tex>I_K</tex>. Заметим, что <tex>\sum\limits_{i = 1}^n \sum\limits_{K = 2}^r x_{iK} = \sum\limits_{i = 1}^n p_i</tex>. Достаточно показать, что для каждого подмножества <tex>A \subseteq \{ 1, . . . , n \}</tex> выполняется | ||
− | <tex>\sum\limits_{i \in A} x_{iK} \leqslant T_Kh(A)</tex> ,где <tex>h(A) = | + | :<tex>\sum\limits_{i \in A} x_{iK} \leqslant T_Kh(A)</tex> ,где <tex>h(A) = |
\begin{cases} | \begin{cases} | ||
S_{|A|}, & \text{if }|A| \leqslant m \\ | S_{|A|}, & \text{if }|A| \leqslant m \\ | ||
Строка 45: | Строка 45: | ||
\end{cases} </tex>. | \end{cases} </tex>. | ||
− | Это означает, что условие <tex>\sum\limits_{i \in A} p_i \leqslant Th(A), \forall A \subseteq \{ 1, ... , n \}</tex> выполняется и требования к обработке <tex>x_{1K}, . . . , x_{nK}</tex> могут быть запланированы как <tex>I_K</tex> для <tex>K = 2, . . . , r</tex>. Рассмотрим подсеть в расширенной сети в подмножестве <tex>A</tex> и соответствующие части потока. Фрагмент частичного потока, который проходит через <tex>(K, j)</tex> ограничен | + | :Это означает, что условие <tex>\sum\limits_{i \in A} p_i \leqslant Th(A), \forall A \subseteq \{ 1, ... , n \}</tex> выполняется и требования к обработке <tex>x_{1K}, . . . , x_{nK}</tex> могут быть запланированы как <tex>I_K</tex> для <tex>K = 2, . . . , r</tex>. Рассмотрим подсеть в расширенной сети в подмножестве <tex>A</tex> и соответствующие части потока. Фрагмент частичного потока, который проходит через <tex>(K, j)</tex> ограничен |
− | <tex>\min \{ j(s_j −- s_{j + 1})T_K, |A|(s_j - s_{j+1})T_K \} = T_K(s_j - s_{j+1}) \min \{ j, |A| \}</tex>. | + | :<tex>\min \{ j(s_j −- s_{j + 1})T_K, |A|(s_j - s_{j+1})T_K \} = T_K(s_j - s_{j+1}) \min \{ j, |A| \}</tex>. |
− | Таким образом, мы имеем | + | :Таким образом, мы имеем |
<table align = center> | <table align = center> | ||
Строка 59: | Строка 59: | ||
</table> | </table> | ||
− | То, что равенство <tex>(*)</tex> справедливо, может рассматриваться как следствие. Если <tex>|A| > m</tex>, то | + | :То, что равенство <tex>(*)</tex> справедливо, может рассматриваться как следствие. Если <tex>|A| > m</tex>, то |
− | <tex>\sum\limits_{j = 1}^m \min \{ j, |A| \}(s_j - s_{j + 1}) = s_1 - s_2 + 2s_2 - 2s_3 + 3s_3 - 3s_4 + ... + ms_s - ms_{m+1} =\ </tex> | + | :<tex>\sum\limits_{j = 1}^m \min \{ j, |A| \}(s_j - s_{j + 1}) = s_1 - s_2 + 2s_2 - 2s_3 + 3s_3 - 3s_4 + ... + ms_s - ms_{m+1} =\ </tex> |
− | <tex>S_m = h(A)</tex>. | + | :<tex>S_m = h(A)</tex>. |
− | В противном случае | + | :В противном случае |
− | <tex>\sum\limits_{j = 1} \min \{ j, |A| \}(s_j - s_{j + 1}) = s_1 - s_2 + 2s_2 - 2s_3 + 3s_3 - ... + (|A| - 1)s_{|A| - 1} -\ </tex> | + | :<tex>\sum\limits_{j = 1} \min \{ j, |A| \}(s_j - s_{j + 1}) = s_1 - s_2 + 2s_2 - 2s_3 + 3s_3 - ... + (|A| - 1)s_{|A| - 1} -\ </tex> |
− | <tex>(|A| - 1)s_{|A|} + |A|(s_{|A|} - s_{|A| - 1} - ... - s_m + s_m - s_{m + 1}) = S_{|A|} = h(A)</tex> | + | :<tex>(|A| - 1)s_{|A|} + |A|(s_{|A|} - s_{|A| - 1} - ... - s_m + s_m - s_{m + 1}) = S_{|A|} = h(A)</tex> |
− | <tex>(a) \Rightarrow (b) | + | <tex>(a) \Rightarrow (b)</tex><br> |
− | Предположим, что допустимое расписание существует. Для <tex>i = 1, ... , n </tex> и <tex>K = 2, ..., r</tex> пусть <tex>x_{iK}</tex> является "объемом работ", который будет выполняться в интервале <tex>I_K</tex> в соответствии с нашим возможным расписанием. Тогда для всех <tex>K = 2, ..., r</tex> и произвольных наборов <tex>A \subseteq \{ 1, . . . , n \}</tex>, неравенство | + | :Предположим, что допустимое расписание существует. Для <tex>i = 1, ... , n </tex> и <tex>K = 2, ..., r</tex> пусть <tex>x_{iK}</tex> является "объемом работ", который будет выполняться в интервале <tex>I_K</tex> в соответствии с нашим возможным расписанием. Тогда для всех <tex>K = 2, ..., r</tex> и произвольных наборов <tex>A \subseteq \{ 1, . . . , n \}</tex>, неравенство |
− | <table align = center> | + | :<table align = center> |
<tr> | <tr> | ||
<td> | <td> | ||
Строка 96: | Строка 96: | ||
Задача <tex>Q \mid pmtn; r_i \mid C_{max}</tex> представляет собой частный случай <tex>Q \mid pmtn; r_i \mid L_{max}</tex>, и может быть решена более эффективно<ref>Описано в Peter Brucker. «Scheduling Algorithms» {{---}} «Springer», 2006 г. {{---}} 133 стр.</ref>. | Задача <tex>Q \mid pmtn; r_i \mid C_{max}</tex> представляет собой частный случай <tex>Q \mid pmtn; r_i \mid L_{max}</tex>, и может быть решена более эффективно<ref>Описано в Peter Brucker. «Scheduling Algorithms» {{---}} «Springer», 2006 г. {{---}} 133 стр.</ref>. | ||
+ | |||
+ | ==Примечания== | ||
+ | <references/> | ||
==Источники информации== | ==Источники информации== | ||
− | * Peter Brucker. «Scheduling Algorithms» {{---}} «Springer», 2006 г. 129 {{---}} 133 стр. {{---}} ISBN 978-3-540-69515-8 | + | * Peter Brucker. «Scheduling Algorithms» {{---}} «Springer», 2006 г. {{---}} 129 {{---}} 133 стр. {{---}} ISBN 978-3-540-69515-8 |
− | |||
− | |||
− | |||
[[Категория: Теория расписаний]] | [[Категория: Теория расписаний]] |
Текущая версия на 19:23, 4 сентября 2022
Задача: |
Рассмотрим задачу на нахождение расписания:
|
Содержание
Алгоритм
Алгоритм решения
Как в задаче применим метод двоичного поиска и сведем задачу к . Для существования расписания с требуется, чтобы у работы с номером выполнялось , что эквивалентно . Опишем алгоритм решения при помощи сведения к задаче поиска максимального потока.
Пусть
— упорядоченная последовательность всех значений и . Определим интервалы на исходной сети (Рис. 1) для . Cчитаем, что станки занумерованы в порядке невозрастания скоростей (также считаем ).Искомая сеть строится с помощью расширения сети из задачи
. Обозначим через набор предшественников узла , тогда замененная нами подсеть определяется как .Расширение сети показано на Рис. 2.
Расширенная подсеть строится путем добавления к вершинам
вершин . При , есть дуги от до с пропускной способностью и для всех и существует дуга из в с пропускной способностью . Это выполняется для каждой вершины . Кроме того, мы сохраняем дуги из в пропускной способностью и дуги из в пропускной способностью (Рис. 1).Корректность и оптимальность алгоритма
Теорема: | ||
Следующие утверждения эквивалентны:
| ||
Доказательство: | ||
| ||
Время работы
Работа с максимальным потоком в расширенной сети занимает
шагов, проверка может быть сделана с такой же скоростью. Для решения мы используем бинарный поиск, а значит, получаем алгоритм с -приближенной сложностью , потому как , ограничен , при .Задача [1].
представляет собой частный случай , и может быть решена более эффективноПримечания
- ↑ Описано в Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 133 стр.
Источники информации
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 129 — 133 стр. — ISBN 978-3-540-69515-8