Список заданий по ТВС 2017 — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
Строка 1: Строка 1:
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 
|+
 
|-align="center"
 
|'''НЕТ ВОЙНЕ'''
 
|-style="font-size: 16px;"
 
|
 
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 
 
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 
 
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 
 
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 
 
''Антивоенный комитет России''
 
|-style="font-size: 16px;"
 
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 
|-style="font-size: 16px;"
 
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 
|}
 
 
 
<wikitex>
 
<wikitex>
 
# Задание 1 с практики 1
 
# Задание 1 с практики 1

Текущая версия на 19:23, 4 сентября 2022

<wikitex>

  1. Задание 1 с практики 1
  2. Задание 2 с практики 1
  3. Задание 3 с практики 1
  4. Задание 4 с практики 1
  5. Задание 5 с практики 1
  6. Задание 6 с практики 1
  7. Докажите, что язык простых чисел принадлежит $NP$. Указание: использовать без доказательства следующие факты. Число $p$ является простым, тогда и только тогда, когда существует первообразный корень по модулю $p$: число $g$, такое что $g^{p-1} \equiv 1 \pmod p$, $g^k \not\equiv 1 \pmod p$ для $1 \le k < p-1$. Число $g$ является первообразным корнем по модулю $p$ тогда и только тогда, когда $g^{p-1} \equiv 1 \pmod p$, $g^{\frac{p-1}{q}} \not\equiv 1 \pmod p$ для всех $q$ - простых делителей $p - 1$.
  8. Факторизация. Рассмотрим факторизацию $n = p_1\cdot p_2 \cdot \ldots \cdot p_k$, где $p_1 \le p_2 \le \ldots \le p_k$ - простые числа. Закодируем последовательность $p_1, p_2, \ldots, p_k$ следующим образом. Запишем последовательно двоичные записи $p_1, \ldots, p_k$, удвоим каждый бит в записи и разделим их строками 01. Получим код $f(n)$. Например, для $15=3\cdot 5$ получим $3_{10} = 11_2$, $5_{10}=101_2$, код для последовательности $111101110011$. Докажите, что язык $\{\langle n, f(n) \rangle\}$ принадлежит $NP$.
  9. Докажите, что язык $\{\langle n, i, b_i \rangle,$ где $b_i$ - $i$-й бит факторизации $f(n)\}$ принадлежит $NP$.
  10. В определении класса $NP$ на языке недетерминированных программ требуется, чтобы в любой ветке развития программа работала не более полинома. Покажите, что это несущественно и можно дать такое определение $NP$: $NP$ - класс языков, для которых существует недетерминированная программа, распознающая принадлежность языку, причем в случае допуска существует хотя бы одна последовательность недетерминированных выборов, приводящая к допуску, такая что время работы ограничено полиномом.
  11. Обозначим как $PS$ множество всех языков, разрешимых с полиномиальной памятью. Докажите, что $NP \subset PS$.
  12. Обозначим как $EXP$ множество всех языков, разрешимых за время $2^{p(n)}$, где $p(n)$ - некоторый полином. Докажите, что $NP \subset EXP$.

</wikitex>