Вещественное евклидово и псевдоевклидово пространство — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Неравенство Коши-Буняковского(Шварца))
м (rollbackEdits.php mass rollback)
 
(не показаны 3 промежуточные версии 3 участников)
Строка 30: Строка 30:
 
возьмём корень из обоих частей уравнения и получим искомое неравенство
 
возьмём корень из обоих частей уравнения и получим искомое неравенство
 
}}
 
}}
 +
==Угол между векторами==
 
{{Определение
 
{{Определение
 
|definition=<tex>\varphi=\angle(x,y)=arccos\frac{\left\langle x;y\right\rangle }{\Vert x\Vert\cdot\Vert y\Vert}</tex>
 
|definition=<tex>\varphi=\angle(x,y)=arccos\frac{\left\langle x;y\right\rangle }{\Vert x\Vert\cdot\Vert y\Vert}</tex>
 
}}
 
}}
 +
NB: корректность следует напрямую из неравенства Коши-Буняковского:
 +
<tex>|\left\langle x,y\right\rangle |\leq\Vert x\Vert\cdot\Vert y\Vert</tex>
 +
==Расстояние от вектора до подпространства==
 +
{{Определение
 +
|definition=
 +
Пусть <tex>L</tex> - подпространство <tex>E\:(x \in E)</tex>
  
 +
Тогда <tex>dist\{x,L\}=inf_{y\in L}(dist\{x,y\})</tex>
 +
}}
 
[[Категория: Алгебра и геометрия 1 курс]]
 
[[Категория: Алгебра и геометрия 1 курс]]

Текущая версия на 19:26, 4 сентября 2022

В этой статье затрагиваются вещественные псевдоевклидовы пространства и вещественные евклидовы пространства.

Неравенство Коши-Буняковского(Шварца)

Теорема:
[math]\forall\: x,y\in E:\;|\left\langle x,y\right\rangle _{G}|\leq\Vert x\Vert_{G}\cdot\Vert y\Vert_{G}[/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим [math]\left\langle \lambda x+y;\lambda x+y\right\rangle =\Vert\lambda x+y\Vert^{2}\geq0[/math] , где [math]\lambda[/math] - число

[math]\left\langle \lambda x+y;\lambda x+y\right\rangle = \left\langle \lambda x;\lambda x\right\rangle +\left\langle \lambda x;y\right\rangle +\left\langle y;\lambda x\right\rangle +\left\langle y;y\right\rangle =[/math]

[math]\lambda^{2}\left\langle x,x\right\rangle +\lambda\cdot(\left\langle x;y\right\rangle +\left\langle y;x\right\rangle )+\left\langle y,y\right\rangle =\Vert x\Vert^{2}\cdot\lambda^{2}+2\lambda\left\langle x;y\right\rangle + \Vert y\Vert^{2}\geq0[/math]

[math]D \le 0[/math]

[math] D/4=(\left\langle x,y\right\rangle )^{2}-\Vert x\Vert^{2}\cdot\Vert y\Vert^{2}\Rightarrow|\left\langle x,y\right\rangle |\leq\Vert x\Vert\cdot\Vert y\Vert [/math]
[math]\triangleleft[/math]

NB: равенство будет только в случае [math]x=\lambda y[/math]

Теорема (следствие из Коши, неравенство треугольника):
[math]\Vert x+y \Vert \leq \Vert x \Vert+\Vert y \Vert[/math]
Доказательство:
[math]\triangleright[/math]

[math]{\Vert x+y \Vert}^{2} = \left\langle x+y; x+y\right\rangle = \Vert x\Vert^{2}+2\left\langle x;y\right\rangle + \Vert y\Vert^{2} [/math]

[math]\left\langle x;y\right\rangle \leq \Vert x\Vert\cdot\Vert y\Vert [/math] (по Коши-Буняковскому)

значит, [math]{\Vert x+y \Vert}^{2} \le \Vert x\Vert^{2}+2{\Vert x\Vert \cdot \Vert y\Vert} + \Vert y\Vert^{2} \le (\Vert x\Vert+\Vert y\Vert)^{2}[/math]

возьмём корень из обоих частей уравнения и получим искомое неравенство
[math]\triangleleft[/math]

Угол между векторами

Определение:
[math]\varphi=\angle(x,y)=arccos\frac{\left\langle x;y\right\rangle }{\Vert x\Vert\cdot\Vert y\Vert}[/math]

NB: корректность следует напрямую из неравенства Коши-Буняковского: [math]|\left\langle x,y\right\rangle |\leq\Vert x\Vert\cdot\Vert y\Vert[/math]

Расстояние от вектора до подпространства

Определение:
Пусть [math]L[/math] - подпространство [math]E\:(x \in E)[/math] Тогда [math]dist\{x,L\}=inf_{y\in L}(dist\{x,y\})[/math]