|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| {{В разработке}} | | {{В разработке}} |
| {{Теорема | | {{Теорема |
Текущая версия на 19:28, 4 сентября 2022
Эта статья находится в разработке!
Теорема (Малая теорема Ферма): |
Если [math]p[/math] простое и [math]a[/math] не делится на [math]p[/math], то [math]a^{p-1}\equiv 1\pmod p[/math] |
На основании этой теоремы можно построить достаточно мощный тест на простоту:
Тест Ферма
Для любого [math]n\gt 1[/math] выбираем [math] a\gt 1[/math], вычисляем [math]a^{n-1}(mod n) [/math], если результат не [math]1[/math], то [math]n[/math] составное, если [math]1[/math], то [math]n[/math] — слабовозможно простое.
Часть чисел проходят тест Ферма и при этом являются составными, такие числа называются псевдопростыми. Для любого основания [math]a[/math] существует бесконечно много псевдопростых чисел по основанию [math]a[/math]. Мы можем сделать тест более точным, проведя его несколько раз для одного и того же числа, но с разными основаниями. Но даже в этом случае существуют числа Кармайкла, проходящие тест для всех чисел, не являющихся их делителями.