|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| {{Определение | | {{Определение |
| |definition= | | |definition= |
Текущая версия на 19:28, 4 сентября 2022
Определение: |
Композицией (произведением, суперпозицией) бинарных отношений (англ. composition of binary relations) [math]R\subseteq A\times B[/math] и [math]S\subseteq B\times C[/math] называется такое отношение [math] (R \circ S) \subseteq A\times C[/math], что:
[math]\forall a \in A, c \in C : a (R \circ S) c \iff \exists b \in B : (a R b) \wedge (b S c) [/math]. |
Примером такого отношения может служить отношение на некотором множестве [math]A[/math] населенных пунктов [math]R\subseteq A\times A[/math] — отношение "можно доехать на поезде", а [math]S\subseteq A\times A[/math] — отношение "можно доехать на автобусе". Тогда отношение [math]R\circ S\subseteq A\times A[/math] — отношение "можно добраться из пункта А в пункт Б, сначала проехав на поезде, а потом на автобусе (только по одному разу)".
Степень отношений
Определение: |
Степень отношения (англ. power of relation) [math]R^{n} \subseteq A\times A[/math], определяется следующим образом:
- [math] R^{n} = R^{n-1} \circ R; [/math]
- [math] R^{1} = R; [/math]
- [math] R^{0} = \{ (x, x) \mid x \in A \}[/math];
|
В связи с этим понятием, также вводятся обозначения:
[math] R^{+} = \bigcup\limits^{\infty}_{i=1} R^{i} [/math] — Транзитивное замыкание (англ. transitive closure) отношения [math]R[/math];
[math] R^{*} = \bigcup\limits^{\infty}_{i=0} R^{i} [/math] — Транзитивно-рефлексивное замыкание отношения [math]R[/math]
Обратное отношение
Определение: |
Отношение [math]R^{-1} \subseteq B\times A[/math] называют обратным (англ. inverse relation) для отношения [math] R \subseteq A\times B[/math], если:
[math] bR^{-1}a \iff aRb [/math] |
Определение: |
Ядром отношения (англ. kernel of relation) [math]R[/math] называется отношение [math] R\circ R^{-1} [/math] |
Свойства
Композиция отношений обладает следующими свойствами:
- Ядро отношения [math] R [/math] симметрично: [math]a (R \circ R^{-1}) b \iff b (R \circ R^{-1})a [/math]
- Композиция отношений ассоциативна: [math] (R \circ S) \circ T = R \circ (S \circ T) [/math]
- Обратное отношение для отношения, являющемуся обратным к [math] R [/math] есть само [math] R :[/math] [math] (R^{-1})^{-1} = R [/math]
- Обратное отношение к композиции отношений [math]R [/math] и [math]S [/math] есть композиция отношений, обратных к [math]R [/math] и [math]S : [/math] [math] (R \circ S) ^ {-1} = (S ^ {-1}) \circ (R ^ {-1}) [/math]
- Обратное отношение к объединению отношений [math]R [/math] и [math]S [/math] есть объединение отношений, обратных к [math]R [/math] и [math]S : [/math] [math] (R \cup S) ^ {-1} = (R^{-1}) \cup (S^{-1}) [/math]
- Обратное отношение к пересечению отношений [math]R [/math] и [math]S [/math] есть пересечение отношений, обратных к [math]R [/math] и [math]S : [/math] [math] (R \cap S) ^ {-1} = (R^{-1}) \cap (S^{-1}) [/math]
См. также
Источники информации