Двудольные графы — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Двудольные графы)
м (rollbackEdits.php mass rollback)
 
(не показано 6 промежуточных версий 2 участников)
Строка 1: Строка 1:
=== Двудольные графы ===
 
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
<span id="Двудольный_граф">'''Двудольный граф'''</span> или '''биграф''' (англ. ''bipartite graph'') {{---}} граф, множество вершин которого можно разбить на две части таким образом, что каждое ребро графа соединяет какую-то вершину из одной части с какой-то вершиной другой части, то есть не существует ребра, соединяющего две вершины из одной и той же части. Двудольный граф с <tex>n</tex> вершинами в одной доле и <tex>m</tex> во второй обозначается <tex>K_{n,m}</tex>.
+
<span id="Двудольный_граф">'''Двудольный граф'''</span> или '''биграф''' (англ. ''bipartite graph'') {{---}} [[Основные определения теории графов|граф]], множество вершин которого можно разбить на две части таким образом, что каждое ребро графа соединяет какую-то вершину из одной части с какой-то вершиной другой части, то есть не существует ребра, соединяющего две вершины из одной и той же части. Двудольный граф с <tex>n</tex> вершинами в одной доле и <tex>m</tex> во второй обозначается <tex>K_{n,m}</tex>.
 
}}
 
}}
  
[[Файл: Bipartite_graph.png|300px|thumb|center|Пример [[Основные_определения_теории_графов#Двудольный_граф |двудольного]] графа]]
+
[[Файл: Bipartite_graph.png|300px|thumb|center|Пример двудольного графа]]
 +
 
 +
[[Категория: Алгоритмы и структуры данных]]
 +
[[Категория: Основные определения теории графов]]

Текущая версия на 19:31, 4 сентября 2022

Определение:
Двудольный граф или биграф (англ. bipartite graph) — граф, множество вершин которого можно разбить на две части таким образом, что каждое ребро графа соединяет какую-то вершину из одной части с какой-то вершиной другой части, то есть не существует ребра, соединяющего две вершины из одной и той же части. Двудольный граф с [math]n[/math] вершинами в одной доле и [math]m[/math] во второй обозначается [math]K_{n,m}[/math].


Пример двудольного графа